CS420 Chapter 5: Reducibility

Wed, November 4, 2020

HW 6/7 Questions?

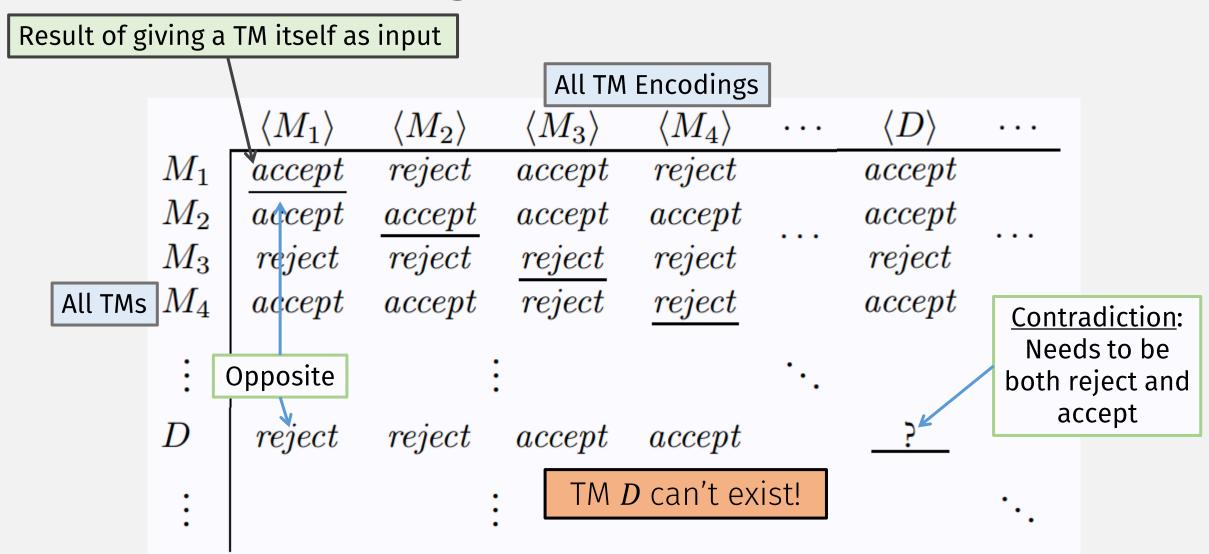
HW announcements

HW4 grades released

HW7 released

New partner required starting from hw7

Last time: Diagonalization of TMs



Last time: A_{TM} is undecidable

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$$

- Proof by contradiction.
- Assume A_{TM} is decidable. Then there exists a decider:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

• If *H* exists, then we can create:

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$. Result of giving a TM itself as input
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."
- But D does not exist! Contradiction!

Reducibility

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

- We proved A_{TM} undecidable by showing that its decider ...
- ... could be used to implement an impossible "D" decider.
 - Was hard to prove (diagonalization)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	$\langle D \rangle$
M_1	accept	reject	accept	reject		accept
M_2	\overline{accept}	accept	accept	accept		accept
M_3	reject	\overline{reject}	reject	reject	• • •	reject
M_4	accept	accept	\overline{reject}	reject		accept
:	:				••	
D	reject	reject	accept	accept		_ ?

- In other words, we **reduced** A_{TM} to the "D" problem.
- But now we can just reduce things to A_{TM} : much easier!

The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

- Thm: $HALT_{TM}$ is undecidable
- Proof, by contradiction:
- Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- **4.** If M has accepted, accept; if M has rejected, reject."
- But A_{TM} has no decider!

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

Recall A_{TM} 's recognizer (which might loop):

Might need to change M: E_{TM} is undecidable

$$E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

- Proof, by contradiction:
- Assume E_{TM} has decider R; use to create A_{TM} decider:
- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

First, construct M_1 Run R on input $\langle M_1 \rangle$

- If R accepts, reject (because it means $\langle M \rangle$ doesn't accept anything)
- if R rejects, then accept(M) accepts w
- Idea: Wrap $\langle M \rangle$ in a TM that only accepts w:

$$M_1$$
 = "On input x :

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

One more, modify M: $REGULAR_{TM}$ is undecidable

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

- Proof, by contradiction:
- Assume $REGULAR_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- First, construct M_2
- Run R on input $\langle M_{|2}^{\setminus} \rangle$
- If R accepts, accept; if R rejects, reject

 $\underline{\text{Want}}: L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Thm: $REGULAR_{TM}$ is undecidable (continued)

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

```
Always accept strings 0^n 1^n (L(M_2) = \text{nonregular})

1. If x has the form 0^n 1^n, accept \leftarrow \text{Can use A}_{CFG} \text{ decider here}

2. If x does not have this form, run M on input w and accept if M accepts w."

If M accepts w, accept everything else (L(M_2) = \Sigma^* = \text{regular})
```

Want: $L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

• Proof, by contradiction:

- $E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \ \text{is a TM and} \ L(M) = \emptyset \}$
- Assume EQ_{TM} has decider R; use to create A_{TM} decider:
- S = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs. $L(M) = \emptyset$
 - 2. If R accepts, accept; if R rejects, reject."

Turing Unrecognizable?

Is there anything out here? A_{TM} Turing-recognizable decidable context-free regular

Thm: Some langs are not Turing-recognizable

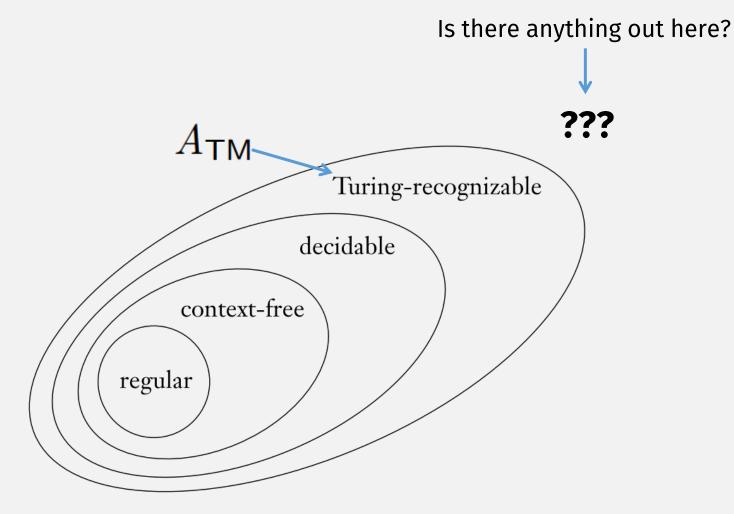
- Lemma 1: The **set of all strings** in Σ^* is countable
 - Count strings of length 0, then
 - Count strings of length 1, ...
- Lemma 2: The **set of all TMs** is countable
 - Because every TM M can be encoded as a string <M>
 - And set of all strings is countable (Lemma 1)
- Lemma 3: The set of all infinite binary sequences ${\mathcal B}$ is uncountable
 - Diagonalization proof (HW7)
- Lemma 4: The **set of all languages** is uncountable
 - ullet There is a mapping to ${\mathcal B}$

Mapping a Lang to a Binary Sequence

Thm: Some langs are not Turing-recognizable

- Lemma 1: The **set of all strings** in Σ^* is countable
 - Count strings of length 0, then
 - Count strings of length 1, ...
- Lemma 2: The set of all TMs is countable
 - Because every TM *M* can be encoded as a string *<M>*
 - And set of all strings is countable (Lemma 1)
- Lemma 3: The set of all infinite binary sequences ${\mathcal B}$ is uncountable
 - Diagonalization proof (HW7)
- Lemma 4: The **set of all languages** is uncountable
 - ullet There is a mapping to ${\mathcal B}$
- Corollary 5:
 - TMs countable, langs uncountable => some langs are not Turing-recognizable

Turing Unrecognizable?



Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

<u>Thm</u>: Decidable ⇔ Turing & co-Turing-recognizable

- => If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 - Decidable langs ⊂ recognizable langs
 - decidable → Turing-recognizable
 - Complement closed for decidable langs
 - decidable → co-Turing-recognizable

<u>Thm</u>: Decidable ⇔ Turing & co-Turing-recognizable

- => If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 - - decidable → Turing-recognizable
 - Complement closed for decidable langs
 - decidable → co-Turing-recognizable
- <= If a language is Turing- and co-Turing recognizable, then it is decidable.
 - Let M1 = recognizer for the lang, M2 = recognizer for complement
 - Decider M:
 - Run 1 step on *M1*, and 1 step on *M2*,
 - Repeat until one machine accepts. If it's M1, accept. If it's M2, reject
 - M1 or M2 must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

Is there anything out here? $\overline{A_{\mathsf{TM}}}$ A_{TM} Turing-recognizable decidable context-free regular

Check-in Quiz 11/4

On gradescope

End of Class Survey 11/4

See course website