CS420
Chapter 5: Reducibility

Wed, November 4, 2020

HW 6/7 Questions?

HW announcements

« HW4 grades released
 HW7 released

* New partner required starting from hw?7

Last time: Diagonalization of TMs

Result of giving a TM itself as input

All TMs

M,
Mo
Ms
My

All TM Encodings

(My) (Mp) (M3) (M) (D)

accept reject accept reject accept

atcept accept accept accept accept

reject reject reject reject reject

agcept accept reject reject accept | oniradiction:

: Needs to be
Opposite both reject and
. . accept
reject reject accept accept P

TM D can't exist!

Last time: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

 Proof by contradiction.
« Assume A, Is decidable. Then there exists a decider:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

* If H exists, then we can create:

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).<— Result of giving a TM itself as input

2. Output the opposite of what H outputs. That is, it H accepts,
reject; and if H rejects, accept.”

e But D does not exist! Contradiction!

Reducibility
Atrm = {{M,w)| M isa TM and M accepts w}

« We proved Aty undecidable by showing that its decider ...

e ... could be used to implement an impossible “D” decider.
- Was hard to prove (diagonalization) . (M) (My) (Ms) (Ma) -~ (D)

accept reject accept reject accept
Ms | accept accept accept accept accept
Ms | reject reject reject reject reject
My | accept accept reject reject accept
D reject reject acceplt accept P

* In other words, we reduced Aty to the “D” problem.

« But now we can just reduce things to Atnm: much easier!

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

 Thm: HALT+\ is undecidable
* Proof, by contradiction:

« Assume HALTtm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

 But ATM haS no deC|der! U = “On input (M, w), where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its

Recall 4;,,'s recognizer (which might loop): e,

Might need to change M: Etp is undecidable

Erm = {(M)| M isaTM and L(M) = 0}

* Proof, by contradiction:
« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

First,
construct M,

Run R on input (My

. If R accepts, reject (because it means (M) doesn’t accept anything)
- if R rejects, thenlaccepd(M) accepts w

 Idea: Wrap (M) in a TM that only accepts w:

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”

One more, modify M: REGULARTy is undecidable

REGULARtm = {(M)| M isaTM and L(M) is a regular language}
 Proof, by contradiction:
e Assume REGULAR+twm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

o| First, construct M,

e Run R on mput (M

2
o [t R accepts, accept; it R rejects, reject

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w

Thm: REGULARTy is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

: Always accept strings 0n1»
Ms = “On mput x: (L(M,) = nonregular)

1. If z has the form 01", accept=—]can use A, decider here |

Acre = {{G.w)| G is a CFG that generates string w}

2. If 2 does not have this form, run M on input w and

accept 1t M accepts w.” ~ fMacceptsw,
accept everything else

(L(M,) = £* = regular)

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w

Reduce to something else: EQ+y is undecidable

EQ+y = {(M;, M3)| My and M5 are TMs and L(M;) = L(Ms)}
 Proof, by contradiction: FErp = (0] MisaTMand L(M) = 0}
« Assume EQ+, has decider R; use to create Zsy decider:

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs. L(M)=10
2. If R accepts, accept; it R rejects, reject.”

Turing Unrecognizable?

Is there anything out here?

' Turing-recognizable

decidable

context-free

regular

Thm: Some langs are not Turing-recognizable

« Lemma 1: The set of all strings in X* is countable
« Count strings of length 0, then
« Count strings of length 1, ...

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
» And set of all strings is countable (Lemma 1)

- Lemma 3: The set of all infinite binary sequences B is uncountable
» Diagonalization proof (HW?7)

« Lemma 4: The set of all languages is uncountable
* There is a mapping to B

Mapping a Lang to a Binary Sequence

All Possible Strings

(countable) |¥* = { ¢, 0, 1, 00, 01, 10, 11, 000, 001, ---

Some Language | A = { 0, 00, O1. 000, 001,
Its Binary Sequence | X A = 0 1 0 1 1 0 0 1 1
1 if lang has
this string,

0 otherwise

Thm: Some langs are not Turing-recognizable

« Lemma 1: The set of all strings in X* is countable
« Count strings of length 0, then
« Count strings of length 1, ...

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
 And set of all strings is countable (Lemma 1)

- Lemma 3: The set of all infinite binary sequences B is uncountable
- Diagonalization proof (HW?7)

« Lemma 4: The set of all languages is uncountable
* There is a mapping to B

 Corollary 5:
« TMs countable, langs uncountable => some langs are not Turing-recognizable

17

Turing Unrecognizable?

Is there anything out here?

ATM e oo

' Turing-recognizable

decidable

context-free

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable < Turing & co-Turing-recognizable

« => |f a language Is decidable,
then 1t is Turing-recognizable and co-Turing-recognizable.
« Decidable langs c recognizable langs
« decidable =» Turing-recognizable

« Complement closed for decidable langs
« decidable = co-Turing-recognizable

Thm: Decidable & Turing & co-Turing-recognizable

« => |f a language Is decidable,
then it is Turing-recognizable and co-Turing-recognizable.
« Decidable langs c recognizable langs
« decidable = Turing-recognizable

« Complement closed for decidable langs
« decidable = co-Turing-recognizable

<= If a language Is Turing- and co-Turing recognizable,
then 1t Is decidable.

« Let M1 = recognizer for the lang, M2 = recognizer for complement

« Decider M:
* Run 1step on M1, and 1step on M2,
« Repeat until one machine accepts. If it's M1, accept. If it's M2, reject

« M1 or M2 must accept and halt, so M halts and is a decider

21

A Turing-unrecognizable language

« We've proved:

At is Turing-recognizable

A+m 1s undecidable

e SO:

Atwm is not Turing-recognizable

Is there anything out here?

ATm Arm

' Turing-recognizable

decidable

context-free

regular

Check-in Quiz 11/4

On gradescope

End of Class Survey 11/4

See course website

