Mapping Reducibility

Monday, November 9, 2020

25

HW7 Questions?

Announcements

* No class next Wednesday Nov 11

 HWS8 released early, due next Tues 11:59pm EST
 (Normal schedule)

Last time: “Reduced” Atm to HALT v

Arm = {(M,w)| M isa TM and M accepts w}

) Thm HALTTM iS undeCidﬂble HALTty = {{M,w)]]\%is a TM and M halts on input w}
* Proof, by contradiction:

« Assume HALTtm has decider R; use to create Aty decider:
S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).<— Use R to first check if M will loop on w

2. If R rejects, reject. Then run M on w knowing it won’t loop
3. If R accepts, simulate M on w until it halts.«<—

4. If M has accepted, accept; if M has rejected, reject.”

 But A;,, has no decider!
« Today: Formalize “reduction” and “reducibilty”

Computable Functions

* Instead of accept/reject, TM “outputs” final tape contents

DEFINITION 5.17

A function f: ¥X*—¥* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Converting one TM to another
 E.g., adding states, changing transitions, etc

Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥* — ¥* where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.

Arm = {{M,w)| M isa TM and M acce o HALTtv = {(M,w)| M isa TM and M halts on input w}

DEFINITION 5.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Thm: A+m1s mapping reducible to HALT twm

¢ TO ShOW: ATM <m HALTtm

« Want: computable fn f : arw) 2 (' .w') where:
U\/L Tﬂ) e Atm if and OIlIy if (M'ﬂ TU’) € HALTtm

The following machine F' computes a reduction f.

F = “On input (M, w):

M accepts w
&

M’ halts on w’

1.

Arm = {(M,w)| M isa TM and M accepts w}
g

HALTtv = {{(M,w)| M isa TM and M halts on input w}

Construct the following machine M'e—_

Converts M to M’

M’ = “On input a:

1. Run M on z.

2. It M accepts, accept.

3. If M rejects, enter a loop.”
Output (M', w).”

\

Output new M’

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥*— ¥*, where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.
DEFINITION 3.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Thm: If A <., B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:

\ 1. Compute f(w).
SRS 2. Run M on input f(w) and output whatever M outputs.”

\ decides
f
DEFINITION 5.20
Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥*— ¥*, where for every w,
/—L—\ we A< f(w) € B.
’ i The function f is called the reduction from A to B.

COro: If A <., B and A is undecidable, then B is undecidable.

 Proof by contradiction.
« Assume B Is decidable.
 Then A is decidable (by the previous thm).

SO we have a contradiction.

If A <,, B and B is decidable, then A is decidable.

New Theorems: Summary

- If A <,, B and B is decidable, then A is decidable.

Known Unknown

g

« If A <., B and A is undecidable, then\B is undecidable.

Alternate Proof: The Halting Problem

HA LT+ 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

¢ ATM <m HALTTM

Flashback: EQ+y is undecidable

EQ+y = {(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

* Proof, by contradiction:

* Assume EQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

e Alternate proof: Show: Ery Sm EQqy °=mmon 520

Language A is mapping reducible to language B, written A <, B,

[CO m D uta b le fn f . (j\/f) 9 <J\/f} Ml > if there is a computable function f: ¥*— ¥* where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.

Reducing to complement: Ery is undecidable
Erm = {(M)| M isaTM and L(M) = 0}

* Proof, by contradiction:

« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M just

described. M; = “On input 2:
. 1. Ifx # w, reject.
2. Run Ron Imnput <J\/Il> 2. If 2 = w, run M on input w and accept if M does.”

”

3. If R accepts, reject; if R rejects, accept.

?‘ But M1 does opposite
 Alternate: computable fn: (M, w) > (M;) 2?7
* So this only reduces A1m to Frm

« Still proves FEry is undecidable
 (HW8: undecidable langs closed under complement)

More Theorems

If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

It A <, Band Aisnot Turing-recognizable, then B is not Turing-recognizable.

» Same proofs as:
If A <,, B and B is decidable, then A is decidable.

If A <,, B and A is undecidable, then B is undecidable.

T h M : EQ+p 1s neither Turing-recognizable nor co-Turing-recognizable

EQ+y = {(My, M>)| M and M> are TMs and L(M;) = L(M2)}

1. EQ+p 1s not Turing-recognizable

Atwm

ATm

Turing-recognizable

decidable

context-free

ATM < EQ1pmA is not Turing-recognizable, th/Q) 1)y not Turing-recognizable.

Review: Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥* — ¥* where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.

A<n B J

implies

A<.B f

- m

DEFINITION 5.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

T h M : EQ+p 1s neither Turing-recognizable nor co-Turing-recognizable
EQ+yv = {(M1, Ms2)| My and M2 are TMs and L(M;) = L(M2)}

1. EQ+p 1s not Turing-recognizable

« Create Computable fn: Atm =2 EQtwm

. Or Computable fn: Avm 2 EQy

Thm: EQ+y, is not ‘Turing-recognizable

EQ+y = {(M1, Ms)| My and M3 are TMs and L(M,) = L(M2)}
» Create Computable fn: Aty =2 EQ+y,
o U\/I, w) > (J\/Il j\/[2> M, and M5 are TMs and L(M;) ¥ L(M,)

F = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
M; = “On any input: «— Accepts nothing
1. Reject.”
My = “On any input: <— Accepts nothing or everything
1. Run M on w. If it accepts, accept.”

2. Output (My, M>).” « If Macceptsw,

M, not equal to M,
« If M does not accept w,
M, equal to M,

Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQTM — {<ﬂffl, f\/fg>| My and Mo are TMs and L(ﬂffl) — L(f\/fg)}

1. EQ1\ 1s not Turing-recognizable

« Create Computable fn: Atm =2 EQtwm

. Or Computable fn: Avm 2 EQy

* DONE!

2. EQ+y is not ¢O-Turing-recognizable
* (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Thm: EQ+y, is not ‘Turing-recognizable

EQ+v = {{(M1, M2)| My and M5 are TMs and L(M;) = L(M>2)}

- Create Computable fn: Aty = EQ4y,

« (M,w) > (My, M) M and M, are TMs and L(M;) ¥ L(My)

F = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
My = “On any input: «<— Accepts nething everything
1. Accept.”
My = “On any input: <— Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Ol]t:_)llt (J\/Il ﬂfg).”

DONE!

. Turing-recognizable

decidable

context-free

regular

EQTwm

Atwm

EQtwm

48

Check-in Quiz 11/9

On gradescope

End of Class Survey 11/9

See course website

