Mapping Reducibility

Monday, November 9, 2020

HW7 Questions?

Announcements

No class next Wednesday Nov 11

- HW8 released early, due next Tues 11:59pm EST
 - (Normal schedule)

Last time: "Reduced" A_{TM} to $HALT_{TM}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

- Thm: $HALT_{TM}$ is undecidable
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

- Proof, by contradiction:
- Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$. Use R to first check if M will loop on w
- 2. If R rejects, reject.

Then run M on w knowing it won't loop

- 3. If R accepts, simulate M on w until it halts.
- **4.** If M has accepted, accept; if M has rejected, reject."
- But A_{TM} has no decider!
- <u>Today</u>: Formalize "reduction" and "reducibilty"

Computable Functions

• Instead of accept/reject, TM "outputs" final tape contents

DEFINITION 5.17

- Example 1: All arithmetic operations
- Example 2: Converting one TM to another
 - E.g., adding states, changing transitions, etc

Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Thm: A_{TM} is mapping reducible to $HALT_{\mathsf{TM}}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$

- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$
- Want: computable fn $f: \langle M, w \rangle \rightarrow \langle M', w' \rangle$ where:

 $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$

The following machine F computes a reduction f.

F = "On input $\langle M, w \rangle$:

- 1. Construct the following machine $M' \leftarrow M' =$ "On input x:
 - **1.** Run *M* on *x*.
 - **2.** If *M* accepts, *accept*.
 - 3. If M rejects, enter a loop."
- **2.** Output $\langle M', w \rangle$."

Output new M'

Converts M to M'

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

DEFINITION 5.17

Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- **2.** Run M on input f(w) and output whatever M outputs."

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Coro: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Proof by contradiction.

Assume B is decidable.

• Then A is decidable (by the previous thm).

So we have a contradiction.

New Theorems: Summary

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Alternate Proof: The Halting Problem HALT_{TM} is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$

Flashback: EQ_{TM} is undecidable

$$EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$$

- Proof, by contradiction:
- Assume EQ_{TM} has decider R; use to create E_{TM} decider:

```
=\{\langle M\rangle|\ M \text{ is a TM and } L(M)=\emptyset\}
```

- S = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."
 - Alternate proof: Show: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$
 - Computable fn $f: \langle M \rangle \rightarrow \langle M, M_1 \rangle$

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Reducing to complement: E_{TM} is undecidable

$$E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$$

- Proof, by contradiction:
- Assume E_{TM} has decider R; use to create A_{TM} decider:

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1 just
 - described.

- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."

- 3. If R accepts, reject; if R rejects, accept."

 But M1 does opposite

 Alternate: computable fn: $\langle M, w \rangle \rightarrow \langle M_1 \rangle$???
 - So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$
 - Still proves E_{TM} is undecidable
 - (HW8: undecidable langs closed under complement)

More Theorems

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Same proofs as:

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

 $\overline{A_{\mathsf{TM}}}$

 $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}A$ is not Turing-recognizable, th EQ_{TM} not Turing-recognizable.

Review: Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

 $A \leq_{\mathrm{m}} B$ implies $\overline{A} \leq_{\mathrm{m}} \overline{B}$

DEFINITION 5.17

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

Thm: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

$$M_2$$
 = "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."
- If M accepts w,
 M₁ not equal to M₂
- If M does not accept w,
 M₁ equal to M₂

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$
- DONE!
- 2. $\overline{EQ}_{\mathsf{TM}}$ is not C_{A} -Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Thm: \overline{EQ}_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow \widehat{EQ_{TM}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing everything

1. Accept."

$$M_2 =$$
 "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

Check-in Quiz 11/9

On gradescope

End of Class Survey 11/9

See course website