CS420: Turing Machines and Recursion

Mon, November 16, 2020

HW 8 Questions?

HW announcements

HW5 grades released

- Reminder: Cite your sources and collaborators!
 - In README
 - Will be penalized in future assignments
 - May have to present in class to demonstrate understanding

Past HW Review

- Using non-determinism properly:
 - "Non-deterministically split the (input) string"
 - "Non-deterministically split the (input) string into all possible pairs"

- Being careful with looping in TMS:
 - Let M1 and M2 recognize L1 and L2, respectively
 - Let S = TM recognizing union of L1 and L2
 - S = On input x:
 - Run M1 on x, accept if accept, else
 - Run M2 on x, accept if accept, else reject
 - If M1 loops and M2 accepts x, S wrongly loops when it should accept

Programmers Use Recursion

Turing Machines and Recursion

• We've been saying: "A Turing machine is just a program."

• Q: Is a recursive program still a Turing machine?

- <u>A</u>: Yes!
 - But it's not explicit.
 - In fact, it's a little complicated.
 - Need to prove it:
 - The Recursion Theorem

A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Where's the recursion???

The Recursion Theorem

- You can write a TM description like this:
 - Prove A_{TM} is undecidable by contradiction, assume that Turing machine H decides A_{TM}
 - B = "On input w:
 - 1. Obtain, via the recursion theorem, own description $\langle B \rangle$.
 - **2.** Run H on input $\langle B, w \rangle$.
 - 3. Do the opposite of what H says. That is, accept if H rejects and

This is a valid (but non-existent)

TM that does the opposite of itself!

reject if H accepts."

rejectacceptacceptacceptacceptacceptacceptacceptaccept rejectrejectrejectrejectrejectrejectrejectaccept How can a TM "obtain it's own description?"

How can a TM even know about "itself" before it's completely defined?

A (Simpler) Coding Exercise

- Your task:
 - Write a program that, without using recursion, prints itself.
- An example, in English:

Print out two copies of the following, the second on in quotes: "Print out two copies of the following, the second on in quotes:"

- This "program" knows about "itself"
- A program can know about "itself", without recursion!

"argument"

"function"

Lambda

```
• \lambda = anonymous function value, e.g. (\lambda (x) x)
```

```
• C++: [](int x){ return x; }
```

- **Java**: (x) -> { return x; }
- Python: lambda x : x
- **JS**: (x) => { return x; }

My Self-Reproducing Program

Self-Reproducing Turing Machine

Program that prints itself

- Our program contains "itself" even though it has no recursion!
- What if we want to do something other than printing "itself"?

Other nonrecursive programs using "itself"

Program that prints "itself":

```
((λ(x) (printf "(~a\n ~v)\n" x x))
  "(λ(x) (printf \"(~a\\n ~v)\\n\" x x)")
```

• Program that runs "itself" repeatedly (ie, it loops):

• Program that passes "itself" to another function:

Still no "recursion" in sight!

The Recursion Theorem, Formally

Recursion theorem Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \longrightarrow \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w).$$

- In English:
 - If you want TM R that includes "obtain own description" ...
 - ... instead create TM T with an explicit "itself" argument ...
 - ... then you can construct *R* from *T*

Recursion Theorem, A Concrete Example

• If you want:

Instead create:

Recursion Theorem, Proof

To convert a "T" to "R":

- 1. Construct $A = \text{program constructing } \langle BT \rangle$, and
- 2. Pass result to B (from before),
- 3. which passes "itself" to T
- Compare with SELF:

Print out two copies of the following, the second on in quotes:

"Print out two copies of the following, the second on in quotes:"

Recursion Theorem Proof: Coding Demo

• Program that passes "itself" to another function:

```
(λ (f)
((λ (x) (f (x x)))
(λ (x) (f (x x)))))
```

Function that needs "itself"

Pass to

Fixed Points

• A value x is a fixed point of a function f if f(x) = x

Recursion Theorem and Fixed Points

THEOREM 6.8

Let $t: \Sigma^* \longrightarrow \Sigma^*$ be a computable function. Then there is a Turing machine F for which $t(\langle F \rangle)$ describes a Turing machine equivalent to F. Here we'll assume that if a string isn't a proper Turing machine encoding, it describes a Turing machine that always rejects immediately.

In this theorem, t plays the role of the transformation, and F is the fixed point.

PROOF Let F be the following Turing machine.

F = "On input w:

- 1. Obtain, via the recursion theorem, own description $\langle F \rangle$.
- **2.** Compute $t(\langle F \rangle)$ to obtain the description of a TM G.
- 3. Simulate G on w."

Clearly, $\langle F \rangle$ and $t(\langle F \rangle) = \langle G \rangle$ describe equivalent Turing machines because F simulates G.

- I.e., Recursion theorem says:
 - "every TM that computes on TMs has a fixed point"
 - As code: "every function on functions has a fixed point"

Y Combinator

• mk-recursive-fn = a "fixed point finder"

```
(define mk-recursive-fn
   (λ (f)
        ((λ (x) (f (λ (v) (x x) v)))
        (λ (x) (f (λ (v) (x x) v)))))
```

mk-recursive-fn alternate name: Y combinator!

<u>Summary</u>: Where "Recursion" Comes From

- TMs are powerful enough to:
 - 1. Construct other TMs
 - 2. Simulate other TMs

That's enough to achieve recursion!

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Where's the recursion???

Check-in Quiz 11/16

On gradescope

End of Class Survey 11/16

See course website