CS420:

Turing Machines and Recursion
Mon, November 16, 2020

[WUY T VBVE NO FRIENDS, REASON #1739 |
UNIMPRESAWE MINDBLOWING EACTS

DID YOU KNOW TUKT
THE WORD “"RECURSION” CONTAING
THE WORD “RECURSION
W /77SELFZ

W OG0A .~
THATS AMAZ..
YOU'RE AN
PESSHOLE.

HW 8 Questions?

HW announcements

« HW5 grades released

« Reminder: Cite your sources and collaborators!
 In README
« Will be penalized in future assignments
« May have to present in class to demonstrate understanding

Past HW Review

« Using non-determinism properly:
 “Non-deterministically split the (input) string”
« “Non-deterministically split the (input) string into all possible pairs”

O

« Being careful with looping in TMS:
« Let M1 and M2 recognize L1 and L2, respectively
* Let S=TM recognizing union of L1 and L2
« S=0n input x:
« Run M1 on x, accept if accept, else
« Run M2 on x, accept if accept, else reject

« If M1 loops and M2 accepts x, S wrongly loops when it should accept

O

Procrammers Use Recursion

(define (
(1T (

(

N

n)
n)

(factorial

(

n)))))

PROBLEMS
WITH
RECQBS\ON

—
=
@®
@
®
P
3
(=]
3
®
—

PROBLEMS
WITH
REC\);QS\ON

R R
i?‘;ﬂ%e %._11‘52 or\e. %’

Turing Machines and Recursion

« We've been saying: “A Turing machine is just a program.”

* Q: Is a recursive program still a Turing machine?

A Turing machine is a 7-tuple, (Q,%, T, 5, o, Gaccept; Greject), Where
Q, X, I are all finite sets and

1. @ is the set of states,

® A: YeS! 2. X is the input alphabet not containing the blank symbol o,
.y s . . 3. T is the tape alphabet, where u € I"'and X C T,
¢ BUt |t S nOt exp |.| Clt. 4, 5: Q xI'—@Q x T x {L, R} is the transition function,

. §o € @ 1s the start state,
+ Gaccepr € @ 1s the accept state, and

* In fact, it's a little complicated.

* Need to prove It:
. The Recursion Theorem Where's the recursion???

~I O\ W

« Greject € @ 15 the reject state, where greject 7 Gaccept-

The Recursion Theorem

* You can write a TM description like this:
* Prove Atwm 1s undecidable by contradiction,

assume that Turing machine H decides Aty

B = “On inputw:

1. Obtain, via therecursion theorem,|own description (B).
2. Run H on input (B, w).

3. Do the opposite of what H says. Thatis, accept it H rejects and

i- - ,’
reject it H accepts. This is a valid (but non-existent)
M) (M) (M) (M) - (D)

M | accept reject accept reject accept TM that dOGS the OppOSite Of itself!

Ms | accept accept accept accept accept
Ms | reject reject reject reject reject

My | accept accept reject reject accept

D reject reject accept accept ?

How can a TM “obtain it’s own description?”

How can a TM even know about “itself”
before it’s completely defined?

A (Simpler) Coding Exercise

* Your task:
« Write a program that, without using recursion, prints itself.

“function”

« An example, in English: /

Print out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:”

* This “program” knows about “itself” “argument”

« A program can know about “itself”, without recursion!

Lambda

» A = anonymous function value, e.g. (A (x) x)
« C++: []1(int x){ return x; }
e Java: (x) -> { return x; }
 Python: Llambda x : X

¢ JS: (x) => { return x; }

My Self-Reproducing Program

rint out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:”

function “argument”

e .

Self-Reproducing Turing Machine

The following TM) computes g(w).

AbLB

Make B into
string
encoding

@ = “On input string w:

(=P (B}#’/ﬁ
p N

3. Hale”
2. Output (P,).”

/ control for SELF\

“argument”

“function”

1. Compute ¢((M)).

1. Construct the following Turing machine P,.
P, = “On any input:
1. Erase input.
2. Write w on the tape.

TMs pass args
by putting it
on tape

—> B = “On input (M), where M is a portion of a TM:

2. Combine the result with (M) to make a complete TM.
3. Print the description of this TM and halt.”

Print out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:”

12

Program that prints itself

SELF = “On any input:
/ 1. Obtain, via the recursion theorem, own description (SELF').

This whole 2. Print (SELF).’;\

program is
“itself” Just this part

Is also “itself”

« Our program contains “itself” even though it has no recursion!

« What if we want to do something other than printing “itself”?

Other nonrecursive programs using “itself”

« Program that prints “itself”:
((A(Xx) | X X))

)
 Program that runs “itself” repeatedly (ie, it loops):

((A (x) (x x))
(A (x) (x x)))

« Program that passes “itself” to another function:

(A ()

« Still no “recursion” in sight!

The Recursion Theorem, Formally

Recursion theorem Let 7" be a Turing machine that computes a function
t: X* x ¥*—X*. There is a Turing machine R that computes a function
r: X*— ¥* where for every w,

* In English:
* If you want TM R that includes “obtain own description” ...

e ... Instead create TM T with an explicit “itself” argument ...

e ...then you can construct Rfrom T

Recursion Theorem, A Concrete Example

n) ;; R
e If you want:
n (factorial (n)))))
But how
to
(define (ITSELF n) ;; T convert?

(1f (n)

* Instead create:
(* n (ITSELF (n)))))

Recursion Theorem, Proof

e To converta “T" to “R”:

A

5]

(:P(BT})

-

control for R

1. Construct A = program constructing <BT>, and
2. Pass result to B (from before),

3. which passes “itself” to T

« Compare with SELF:

Print out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:f

18

Recursion Theorem Proof: Coding Demo

* Program that passes “itself” to another function:

(A (F)
((A (x) (f (x x)))

(A (x) (f (x x)))))

e Function that needs “itself”

Pass to

(define (ITSELF n) ;; T

(if (n)

(* n (ITSELF (n)))))

Fixed Points

« Avalue x is a fixed point of a function fif f{x) =x

Recursion Theorem and Fixed Points

THEOREM 6.8 ...

Let t: ¥*— X" be a computable function. Then there is a Turing machine
F for which ¢((F')) describes a Turing machine equivalent to F. Here we’ll
assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.

In this theorem, ¢ plays the role of the transformation, and F' is the fixed point.

PROOF Let F be the following Turing machine.

F = “On mput w:
1. Obtain, via the recursion theorem, own description (F’).
2. Compute t((F)) to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F) and ¢t((F)) = (G) describe equivalent Turing machines because
F simulates G.

* |.e., Recursion theorem says:
« “every TM that computes on TMs has a fixed point”
« As code: “every function on functions has a fixed point”

Y Combinator

 mk-recursive-fn =a “fixed point finder”

(define mk-recursive-fn

(A (f)
(

((A (x)
(A (x) (f (A (v) (x x) v))))))

(f (A (v) (x x) v)))

e mk-recursive-fn alternate name: Y combinator!

Summary: Where “Recursion” Comes From

A Turing machine is a 7-tuple, (Q,X, T, d, qo, Gaccepts reject), Where
Q, X, I are all finite sets and

1. Q is the set of states,
2. ¥ 1s the input alphabet not containing the blank symbol o,

° TMS are powerfUI enough to: 3. I:isthctapcalphabct,whcrceEFandZﬂQ L, -
4.6: Q xI'—Q x I x {L, R} 1s the transition function,
1. Construct other TMs . g0 € Qs the start state,
2. Simulate other TMs

+ Gaceept € @ 1s the accept state, and

~I N W

. Greject € @ 1s the reject state, where greject 7 Gaccept-

Where's the recursion???

« That's enough to achieve recursion!

Check-in Quiz 11/16

On gradescope

End of Class Survey 11/16

See course website

