

THE MOVER REASSURES THEM. I BEEN AT THIS 30 YEARS. I CAN LOOK AT ANY AMOUNT OF STUFF AND INSTANTLY TELL YA IF IT CAN FIT IN THE MOVING BINS.

THE PHYSICIST SAYS... IT'S OBVIOUS IT CAN FIT. IF IT WERE THE DENSITY OF A NEUTRON STAR, OUR STUFF WOULD BE THE SIZE OF A BASEBALL.

smbc-comics.com

CS420 Time Complexity

Wed November 18, 2020

HW questions?

Announcements

Graded HW6 returned

HW9 released

Flashback: Single-tape TM "equiv to" Nondet. TM

Flashback: Single-tape TM "equiv to" Nondet. TM

- Deterministic TM simulating nondeterministic TM:
 - Number the nodes at each step
 - Deterministically check every path, in breadth-first order (restart at top each time)

 - 1-1
 - 1-2
 - 1-1-1
 - 1-1-2
 - and so on

But, exactly how inefficient is it???

--- CS420 Fall2020 class

Now we'll start to count "# of steps"

Accept if accepting config found

Nondeterministic computation

To be continued ...

accept

Simpler Example: $A = \{0^k 1^k | k \ge 0\}$

M_1 = "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

• Number of steps (worst case), n = length of input:

- TM Line 1:
 - n steps to scan + n steps to return to beginning = 2n steps
- Lines 2 and 3:
 - Each scan: n/2 steps to find 1 + n/2 steps to return = n steps
 - Each scan crosses off 2 chars, so at most n/2 scans
 - Total: $n(n/2) = n^2/2$ steps
- Line 4:
 - n steps to scan input one more time
- Total: $2n + n^2/2 + n = n^2 + 3n$ steps

Interlude: Polynomials

Definition: Time Complexity

n depends on kind of input

n can be other things, e.g., #states or set size, that are correlated with input length

DEFINITION 7.1

Let M be a deterministic Turing machine that halts on all inputs. The *running time* or *time complexity* of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that M uses on any input of length n. If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing machine. Customarily we use n to represent the length of the input.

- Machine M_1 that decides $A = \{ \mathbf{0}^k \mathbf{1}^k | k \geq 0 \}$
 - ... runs in time $n^2 + 3n$

 $M_1 =$ "On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1.

"length" of the

input

- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

Interlude: Asymptotic Analysis

- Total: $n^2 + 3n$
 - If n = 1
 - $n^2 = 1$
 - 3n = 3
 - <u>Total</u> = 4
 - If n = 10
 - $n^2 = 100$
 - 3n = 30
 - Total = 130
 - If n = 100
 - $n^2 = 10000$
 - 3n = 300
 - <u>Total</u> = 10300
 - If n = 1000
 - $n^2 = 1000000$
 - 3n = 3000
 - <u>Total</u> = 1003000
- $n^2 + 3n \approx n^2$ as n gets large
- asymptotic analysis only cares about large *n*

<u>Definition</u>: Big-O Notation

DEFINITION 7.2

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

$$f(n) \le c g(n)$$
.

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

- In English: Keep only highest order term, drop all coefficients
- Machine M_1 that decides $A = \{0^k 1^k | k \ge 0\}$ Is an n^2 +3n time Turing machine
 - Is an $O(n^2)$ time Turing machine
 - Has asymptotic upper bound $O(\mathbf{n}^2)$

<u>Definition</u>: Small-o Notation (less used)

DEFINITION 7.5

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In other words, f(n) = o(g(n)) means that for any real number c > 0, a number n_0 exists, where f(n) < c g(n) for all $n \ge n_0$.

Analogy:

• Big-0: <= :: small-o: <

DEFINITION 7.2

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

$$f(n) \le c g(n).$$

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

Big-O arithmetic

$$\bullet O(\mathbf{n}^2) + O(\mathbf{n}^2)$$
$$= O(\mathbf{n}^2)$$

•
$$O(\mathbf{n}^2) + O(\mathbf{n})$$

= $O(\mathbf{n}^2)$

<u>Definition</u>: Time Complexity Classes

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the **time complexity class**, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

- Machine M_1 that decides $A = \{0^k 1^k | k \ge 0\}$
 - Is an $O(n^2)$ time Turing machine
 - And A is in $TIME(n^2)$

A Faster Machine? $A = \{0^k \mathbf{1}^k | k \ge 0\}$

 $M_2 =$ "On input string w:

- 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
- **2.** Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

 M_1 = "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

• Number of steps (worst case), n = length of input:

- Line 1:
 - n steps to scan + n steps to return to beginning = O(n) steps
- Lines 2 and 3:
 - Each scan: $O(\mathbf{n})$ steps
 - Each scan crosses off <u>half</u> the chars, so at most $O(\log n)$ scans
 - Total: $O(n) O(\log n) = O(n \log n)$ steps
- Line 4:
 - $O(\mathbf{n})$ steps to scan input one more time
- Total: $O(n) + O(n \log n) + O(n) = O(n \log n)$ steps

Interlude: Logarithms

•
$$2^{x} = y$$

•
$$\log_2 y = x$$

• (In computer science, base-2 is the only base)

- $\log_2 n = O(\log n)$
 - "divide and conquer" algorithms = $O(\log n)$
 - E.g., binary search

Terminology: Categories of Bounds

- Exponential time
 - $O(2^{n^c})$, for c > 0 (always base 2)
- Polynomial time
 - $O(n^c)$, for c > 0
- Quadratic time (special case of polynomial time)
 - $O(\mathbf{n}^2)$
- Linear time (special case of polynomial time)
 - O(n)
- Log time
 - $O(\log n)$

Multi-tape vs Single-tape TMs: # of Steps

- For *S* to simulate 1 step of *M*:
 - Scan to find all "heads"
 - "Execute" transition of at all the heads
 - Max single-tape steps to do 1 multitape step = O(length of all M's tapes)
 - = O(t(n)) (If M spends all its steps expanding its tapes)
- Total steps (single tape): O(t(n)) per step × t(n) steps = $O(t^2(n))$

Single-tape TM vs Nondet. TM: # of steps

- Deterministic TM simulating nondeterministic TM:
 - Number the nodes at each step
 - Deterministically check every path, in breadth-first order (restart at top each time)

 - 1-1
 - 1-2
 - 1-1-1
 - 1-1-2
 - and so on

But, exactly how inefficient is it???

--- CS420 Fall2020 class

Now we'll start to count "steps"

Accept if accepting config found

Nondeterministic computation

To be continued ...

accept

Single-tape TM vs Nondet. TM: # of steps

$2^{O(t(n))}$ time

- Deterministic TM simulating nondeterministic TM: t(n) time
 - Number the nodes at each step
 - Deterministically check every path, in breadth-first order (restart at top each time)
 - 1
 - 1-1
 - 1-2
 - 1-1-1
 - 1-1-2
 - and so on
 - Accept if accepting config found

Nondeterministic computation

Summary

- If multi-tape TM: t(n) time
- Then equivalent single-tape TM: $O(t^2(n))$
 - Quadratically slower
- If non-deterministic TM: t(n) time
- Then equivalent single-tape TM: $2^{O(t(n))}$
 - Exponentially slower

Check-in Quiz 11/18

On gradescope

End of Class Survey 11/18

See course website

Polynomial Time

Monday November 23, 2020

Check-in Quiz 11/23

On gradescope

End of Class Survey 11/23

See course website