AN ENGINEER, A PHYSICIST,
AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MOVING TO A NEW PLACE.

AS THE MOVER PULLS OUP, THE
MATHEMATICIAN WORRIES
THERE ISN'T ENOUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAVS...

T BEEN AT THIS 30 YEARS,

T CAN LOQK AT ANY AMOUNT
OF STUFF AND INSTANTLY
TELL YA IF IT CAN FIT IN THE
MOVING BINS.

IT'S OBVIOUS IT CAN FIT,
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

:!ﬂ!

THE PHVYSICIST SAYS..

IT'S OBVIOUS |T CAN FIT. IF

IT WeRe THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOULD BE THE SIZE OF A
BASEEALL.

THE MATHEMATICIAN SAYS...

PLEASE DON'T
HACK My EMAIL

smbc-comics.com

CS420
Time Complexity

Wed November 18, 2020



HW questions?



Announcements

« Graded HW6 returned

« HWI released



Flashback: Single-tape TM “equiv to” Nondet. TM




Flashback: Single-tape TM “equiv to” Nondet. TM

Nondeterministic
« Deterministic TM simulating computation
nondeterministic TM: :
 Number the nodes at each step v/ \,
« Deterministically check every path, in f \, \
breadth-first order (restart at top each time) 2 3
° 1 .
. 1-1 “This is the most inefficient algorithm ever” '.{ \.'
. 12 --- CS420 Fall2020 class v/ 1
e 1-1-1 reject e
. 1-1- But, exactly how inefficient is it???
e and so on Now we’ll start to count “# of steps” ‘1
« Accept if accepting config found

To be continued ... " accept



Simpler Example: A = {0*1*

k> 0)

M = “On input string w: —
1. Scan across the tape and reject if a 0 is found to the right of a 1. DL ereenionhe..
2. Repeatif both Os and 1s remain on the tape: A
3. Scan across the tape, crossing off a single 0 and a single 1. = PLOOOELLIO00
4. 1If Os still remain after all the 1s have been crossed off, or if 1s le LOOOx11000u...
still remain after all the Os have been crossed off, reject. Other- xx1000x11000u...
wise, if neither Os nor 1s remain on the tape, accept.” KXXRXXEXXXXEXD ..

accept

« Number of steps (worst case), n = length of input:
« TM Line 1:
« n steps to scan + n steps to return to beginning = 2n steps

 Lines 2 and 3:
« Each scan:n/2 steps to find 1 + n/2 steps to return = n steps
» Each scan crosses off 2 chars, so at most n/2 scans
* Total: n (n/2) = n?/2 steps
 Line 4:
 n steps to scan input one more time
* Total: 2n + n?/2 + n = n% +3n steps



Interlude: Polynomials

order/degree coefficients

Highest order term —>6_‘n,3 —+ 2_?12 -+ 20_?1 + 4_5

A =

terms




Definition: Time Complexity

n depends on
kind of input

n can be other
things, e.g.,
#tstates or set
size, that are
correlated with
input length

» Machine M, that decides A = {0%1*| k > 0} input

e ...runs in time n% +3n

DEFINITION 7.1

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time of M,
we say that M runs in time f(n) and that M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the

mput. n is only roughly
“length” of the

My = “On input string w:
Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both 0s and 1s remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the 0s have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

SO U S




Interlude: Asymptotic Analysis

e Total: n2 +3n
e Ifn=1

e n¢=1

e 3n=30
« Total=130
* Ifn=100
* n?=10000
* 3n=300
» Total=10300
* Ifn=1000
* n?=1000000
« 3n=3000
« Total=1003000

* n? +3n ~ n%as n gets large
« asymptotic analysis only cares about large n



Definition: Big-0 Notation

DEFINITION 7.2

Let f and g be functions f, g: N'— R ™. Say that f(n) = O(g(n))

if positive integers ¢ and n exist such that for every integer n > ny,
f(n) <cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

* In English: Keep only highest order term, drop all coefficients

* Machine M, that decides 4 — fok1k| i > (}
 Is an nZ +3n time Turing machine —
* Is an O(n?) time Turing machine
« Has asymptotic upper bound 0(n?)



Definition: Small-o Notation (less used)

DEFINITION 7.5

Let f and g be functions f, g: N— R ™. Say that f(n) = o(g(n))
if

fw)
nlggc g(n) =&

In other words, f(n) = o(g(n)) means that for any real number
¢ > 0, a number n exists, where f(n) < cg(n) for all n > ny.

* Analogy: DEFINITION 7.2
¢ B|g'0 <=1 Small'O . < Let f and g be functions f,g: N— R™. Say that f(n) = O(g(n))

if positive integers c and ng exist such that for every integer n > ny,
f(n) < cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.




Big-0 arithmetic

* 0(n?) + O(n?)
= 0(n?)

* 0(n?) + O(m)
- 0(n?)



Definition: Time Complexity Classes

DEFINITION 7.7

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

- Machine M, that decides A = {0¥1*| k > 0}
* Is an O(n?) time Turing machine
« And A is In TIME(n?)



A Faster Machine? A = {0~1F

4.

M3 = “On input string w:
1.
2.
3.

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat as long as some 0s and some 1s remain on the tape:
Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
Scan again across the tape, crossing off every other 0 starting
with the first 0, and then crossing off every other 1 ctarting
with the first 1.
If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

k> 0)

M; = “On input string w:

1.

Vo
3.
4.

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both 0s and 1s remain on the tane:

Scan across the tape, crossing off a single 0 and a single 1.
If 0s still remain after all the 1s have been crossed oft, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

- Number of steps (worst case), n = length of input:

e Line 1;

e n steps to scan + n steps to return to beginning = O(n) steps

 Lines 2 and 3:
« Each scan: O(n) steps
« Each scan crosses off half the chars, so at most O(log n) scans
» Total: O(n) O(log n) = O(n log n) steps

e Line 4:

« O(n) steps to scan input one more time
» Total: O(n) + O(nlog n) + O(n) = O(n log n) steps



Interlude: Logarithms

o )X — y
* log,y =X
* (In computer science, base-2 is the only base)

* log,n=0(log n)
- “divide and conquer” algorithms = O(log n)
 E.g., binary search



Terminology: Categories of Bounds

« Exponential time
* 0(2""9), for ¢ > 0 (always base 2)

* Polynomial time
e O(n¢), forc>0
e Quadratic time (special case of polynomial time)
* O(n?)
e Linear time (special case of polynomial time)
* O(n)
* Log time
* O(logn)



Multi-tape vs Single-tape TMs: # of Steps

011(0|1]|0|u]...

t(n) ttme | 5y

— d(d|da (U] ...

O (n))|time [g]

* For S to simulate 1 step of M:
e Scan to find all “heads”
e “Execute” transition of at all the heads

« Max single-tape steps to do 1 multitape step = O(length of all M's tapes)
- = 0(t(n)) (If M spends all its steps expanding its tapes)

» Total steps (single tape): O(t(n)) per step x t(n) steps = O(t3(n))




Single-tape TM vs Nondet. TM: # of steps

Nondeterministic
« Deterministic TM simulating computation
nondeterministic TM: :
 Number the nodes at each step v/ \,
« Deterministically check every path, in f \, \
breadth-first order (restart at top each time) 2 3
° 1 .
. 1-1 “This is the most inefficient algorithm ever” '.{ \.'
. 12 --- CS420 Fall2020 class v/ 1
e 1-1-1 reject e
. 1-1- But, exactly how inefficient is it???
e and so on Now we’ll start to count “steps” ‘1
« Accept if accepting config found

To be continued ... " accept



Single-tape TM vs Nondet. TM: # of steps
20t (n))[time Nondeterministic
« Deterministic TM simulating computation

nondeterministic TM: ¢(n) time
 Number the nodes at each step
« Deterministically check every path, in

. 1
. 1-1
¢ 1-2
¢« 1-1-1
¢« 1-1-2
« and so on
« Accept if accepting config found

pt(n) — 9O(t(n))

/N
(\.\

breadth-first order (restart at top each time) 2 3

Max height

{ } (longest path)

‘ t(n)
reject ![ \'

Max branching -,
(number of paths) 1

* laccept



summary

e If multi-tape TM: t(n) time

« Then equivalent single-tape TM: O(t*(n))
* Quadratically slower

* If non-deterministic TM: t(n) time

* Then equivalent single-tape TM: 20(t(n))
« Exponentially slower



Check-in Quiz 11/18

On gradescope

End of Class Survey 11/18

See course website



Polynomial Time
Monday November 23, 2020



Check-in Quiz 11/23

On gradescope

End of Class Survey 11/23

See course website



