Polynomial Time
Monday November 23, 2020



HW Questions?



Announcements

 See piazza for note about grading

 See plazza for note about submitting work that is not yours
e Tl:dr: Don’t do it!

 Grace period until Nov 30 11:59pm EST
« Anyone may resubmit hw 7 or hw 8 without penalty



How to Use Answers from the Internet

« Assume course staff sees everything you do

« Changing variable names or using a thesaurus is insufficient
« Don’t just make local changes
« If the structure of the answer is unchanged, it's still copied

« Any “weirdness” in the answer indicates copying
« Small mistakes, wrong terminology, bad grammar, nonsensical phrases
« At best it better be unique to your submission



We are here
(deterministic, single-tape deciders,
unless otherwise indicated)

Turing-recognizable

decidable

context-free

regular



DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n").
k

 Corresponds to “realistically” solvable problems

e From now on:
e Problems in P = “solvable”

* Problems outside P = “unsolvable”
« These are usually “brute force” solutions that “try all possible inputs”



Today: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)|  and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P



Interlude: Graphs (see Chapter 0)

edges

(undirected) wh nodes / vertices

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

- Edge defined by two nodes (order doesn’t matter)

* Formally, a graph = (1} E)
« I/ =set of nodes, E = set of edges

 This will roughly be the string encoding passed to TMs, ie <G>



Interlude: Graph Encodings

({J"-'Q' 3"'435}" {(1"2)3 (2"3)' (31 4)" ('_]:' 5)" (5' 1)})

* In graph algorithms, count steps in terms of number of vertices

« and sometimes number of edges
* Instead of actual “length of input”

* Given a graph G = (V, E) with |V| vertices

* Max edges =
- O(lv1?)

« SO # vertices + edges Is always po

« Algorithm runs in time polynomia
algorithm runs in time polynomia

ynomial in length of input
| Iin the number of vertices &

| In the length of input



Interlude: Weighted Graphs

Edge weights




Interlude: Subgraphs

Graph H

Subgraph G

shown darker




Interlude: Paths and other Graph Things

e Path

« A sequence of nodes connected by edges

* Cycle
* A path that starts/ends at the same node

-

» Connected graph
« Every two nodes has a path

-]

ree
« A connected graph with no cycles



Interlude: Directed Graphs

({1~2~3“L516} {(1'~2)'~ (15) (211)1 (24) (514)1 (5~6)'~ (611)1 (6*3)})
 Directed graph = (V E)
« IV =set of nodes, E = set of edges

« An edge Is a pair of nodes (u,v), order now matters
 u="“from” node, v = “t0” node

« A “degree” of a node is the number of edges connected to the node
« Nodes in a directed graph have both indegree and outdegree



A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

« To prove that a language i1sin P ...

e ... we must construct a polynomial time algorithm deciding the lang

» A non-polynomial (i.e., exponential, brute force) algorithm:
« check all paths, and see if any connectsto t



A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3.  Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

- #f of steps (n = # nodes):
« Line 1: 1 step
 Line 3: max # steps = max # edges = 0(n?)
 Line 2: loop runs at most n times
« Line 4: 1 step
Total = O(n’)



A Number Theorem: RELPRIME € P
RELPRIME = {(x,y)| x and y are relatively prime}

« Two numbers are relatively prime if their gcd =1
 E.g.,gcd(8,12)=4

 Brute force exponential algorithm deciding RELPRIME:

» Try all of numbers (up to x or y), see if it can divide both numbers
« Why is this exponential?
« HINT: What is a typical “representation” of numbers?

« We can prove using a gcd algorithm that runs in poly time
 E.g.,, Euclid’s algorithm



A GCD Algorithm for: RELPRIME € P

RELPRIME = {(x,y)| x and y are relatively prime}

Modulo (i.e., The Euclidean algorithm E is as follows.
remainder) step cuts E = “On input (x, y), where x and y are natural numbers in binary:
x at least in half, e.g., — 1. Repeatuntil y = 0:
- 15mod8=7 2. PAssign x < x mod y. Each number is
- 17mod8=1 3. Exchange zandy. < cut in half every
: : 4. Output z.” other iteration
Cutting X In —
half every step:
log x steps
So run time

(assume x > y) is

2log x = 2log2" =

O(n), where n =
length of x




A CFG Theorem: Every context-free language is a member of P

 Given a CFL 4, can we decide membership in poly time?

* |l.e., given grammar G and program w is there a poly time parsing algo?

° I .
Decider for A: Let G be a CFG for A and design a TM M; that decides A. We build

a copy of G into M. It works as follows.

From Thm 4.9
M¢g = “On input w:

1. RunTM S on input (G, w).
2. If this machine accepts, accept; if it rejects, reject.”

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert GG to an equivalent grammar in Chomsky normal form.

7 2. Listall derivations with 2n — 1 steps, where n is the length of w;
® except if n = 0, then instead list all derivations with one step.
3. Ifany of these derivations generate w, accept; if not, reject.”

* This algorithm runs in exponential time

From Thm 4.7

?



Dynamic Programming

« Keep track of partial solutions, and re-use them

* For CFG problem, instead of re-generating entire string ...
« ... keep track of which variables can generate which substrings




CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring
start char

QO T 9 Qv T

43



CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa”  vars for “aab”

start char

QO T 9 Qv T

A



CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - IfA->cisarule, add A to table
« B>CC|b
« C>AB]|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa”  vars for “aab”

start char

QO T 9 Qv T

45



CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:

- A>BA|a - IfA->cisarule, add A to table

« B>CC|b
« C>AB|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring AC

start char AC

QO T 9 Qv T

A)Q6



CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
« S AB| BC - Foreach single char c and var A:
- A>BA|a - IfA%usa.rule,addAtotable
« B> CClb - For each substring s: . .
- For each split of substring s into x,y:
C ek - For each rule of shape A > BC:
« Example string: baaba - Use table to check if B
. Store every partial string and their gdre e o ooncrates xand C generates y

Substring
start char

Substring end char

O T Q9 Qv T

AC
AC

A} G+7



CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

AC

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?




CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

A,C

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?




CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
« S AB| BC - Foreach single char c and var A:
- A>BA|a - IfA%usa.rule,addAtotable
« B> CClb - For each substring s: . .
- For each split of substring s into x,y:
C ek - For each rule of shape A > BC:
« Example string: baaba - Use table to check if B
. Store every partial string and their gdre e o ooncrates xand C generates y

Substring
start char

Substring end char

O T Q9 Qv T

S,A,C

A,C B B S,A,C
AC S,C B

B S,A

A)QO



A CFG Theorem: Every context-free language is a member of P

D =“On input w = wi - - - Wh:
1. Forw =¢,if S = £1isa rule, accept; else, reject. [w = € case]
2. Fori=1ton:| O(n) [examine each substring of length 1]
3.  For each variable A: | #vars
4. Test whether A — b is a rule, where b = w;. #vars *n = 0(11)
5. If so, place A in tgble(i, ).
6. Forl=2ton:|0(n) [ 1 is the length of the substring |
7. Fori=1ton — 1+ 1: | O(n) E start position of the substring ]
8. Letj=i+1—1. [ 4 is the end position of the substring |
9. Fork=itoj—1: |0(n) [ % is the split position ]
10. For each rule A — BC:" #rules
11. If table(i, k) contains B and table(k + 1,j) contains
C, put A in table(i, 7). * * % _ 3
12. If Sisin table(1,n), accept; else, JT.#.FUIBS O(D) O(D) O(Il) _ O(H )

* Total: O(n3)
« A.k.a., Earley parsing algorithm




Summary: 3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {(z,y)|  and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P



Check-in Quiz 11/23

On gradescope

End of Class Survey 11/23

See course website



