

Monday November 23, 2020

CREDIT: HAL MAYFORTH

HW questions?

Announcements

- HW10 released
 - Note extended due date: Sun Dec 6 11:59pm EST
- HW7 and 8 resubmissions due Mon Nov 30 11:59pm EST

Recap: The *PATH* Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- The **search** problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connects s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go

Verifying a *PATH*

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- The **verification** problem:
 - Given some path p in G, check that it is a path from s to t
 - Let *m* = longest possible path = # edges in *G*
 - <u>Verifier</u> V = On input $\langle G, s, t, p \rangle$, where p is some set of edges:
 - 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = $O(\mathbf{m})$
 - 2. While there remains unmarked edges in p:
 - a) Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - b) If found, then mark that edge and set it as "current", else reject
 - Max steps of each loop iteration O(m)
 - Loop iterates at most \mathbf{m} times; total looping time = $O(\mathbf{m}^2)$
 - 3. Check "current" edge has "to" node t; if yes accept, else reject
 - Total time = $O(\mathbf{m}) + O(\mathbf{m}^2) = O(\mathbf{m}^2)$ = polynomial in m

Verifiers, Formally

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ **7.18** DEFINITION A **verifier** for a language A is an algorithm V, where $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$ *certificate*, or *proof* We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial

- NOTE: a cert c must be at most length n^k , where n = length of w
 - Why?
- PATH is polynomially verifiable

time verifier.

The HAMPATH Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

A Hamiltonian path goes through every node in the graph

- The **Search** problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
 - Polynomial time algorithm:
 - We don't know if there is one!!!
- The Verification problem:
 - Still $O(\mathbf{m}^2)$!
 - HAMPATH is polynomially verifiable, but <u>not</u> polynomially decidable ⁶⁷

The class NP

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but not P

NP = Nondeterministic polynomial time

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

THEOREM 7.20

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- => If a lang L is in NP, then it has a poly time verifier V
- Create NTM deciding L: on input w =
 - Nondeterministically run $\it V$ with $\it w$ and all possible certs $\it c$
- <= If L has NTM decider N,
 - then let the cert denote one accepting path in N
 - Then create poly time verifier that runs N for only that path

P vs NP

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

DEFINITION 7.21

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

COROLLARY **7.22**

$$NP = \bigcup_k NTIME(n^k).$$

More NP Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes

- $SUBSET ext{-}SUM=\{\langle S,t\rangle|\ S=\{x_1,\ldots,x_k\},\ \text{and for some}$ $\{y_1,\ldots,y_l\}\subseteq\{x_1,\ldots,x_k\},\ \text{we have}\ \Sigma y_i=t\}$
 - Some subset of a set of numbers sums to some total
 - e.g., $\{4, 11, 16, 21, 27\}, 25\} \in SUBSET-SUM$

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G. $O(\mathbf{k})$
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

 $O(\mathbf{k}^2)$

DEFINITION 7.18

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

Proof 2: *CLIQUE* is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

N = "On input $\langle G, k \rangle$, where G is a graph:

- 1. Nondeterministically select a subset c of k nodes of G.
- **2.** Test whether G contains all edges connecting nodes in c.
- **3.** If yes, accept; otherwise, reject."

"try all subgraphs"

 $O(\mathbf{k}^2)$

THEOREM 7.20 -----

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$

- A composite number is <u>not</u> prime
- COMPOSITES is polynomially verifiable
- A certificate could be:
 - Some factor that is not 1

- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)

Does P = NP?

One of the greatest unsolved mysteries in math and computer science

It's hard to prove that something doesn't exist

smbc-comics.co

Check-in Quiz 11/25

On gradescope

End of Class Survey 11/25

See course website