

(C) 2011 Ryan North www.qwantz.com

P vs NP

Monday November 30, 2020

HW questions?

Recap: P vs NP

- P = class of languages that can be decided "quickly"
 - i.e., "solvable" with a deterministic TM
- NP = class of languages that can be verified "quickly"
 - or, "solvable" with a nondeterministic TM
- Does P = NP?
 - Problem first posed by John Nash

 Why do some problems have a polynomial time solution and others do not?

Implications if P = NP

- Every problem with a "brute force" solution also has an efficient solution
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - Near perfect AI learning, recognition
- GOOD: Optimization problems are solved
 - No more overcrowding or hunger?
 - Abundant energy resources?

Smbc-comics.com

Progress on whether P = NP?

Some, but still not close

$$P \stackrel{?}{=} NP$$

Scott Aaronson*

The Status of the P Versus NP Problem

By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 10.1145/1562164.1562186

One important concept: NP-Completeness

Flashback: Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

DEFINITION 7.29

Language A is **polynomial time mapping reducible**, ¹or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **polynomial time reduction** of A to B.

poly time

Flashback: If $A \leq_m B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

decides

1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs."

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

THEOREM 7.31 If $A \leq_{\frac{m}{P}} B$ and $B \in \mathcal{P}$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

THEOREM 7.31 If $A \leq_{\frac{m}{D}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in P}{\text{is decid}}$

poly time poly time A we let A be the decider for A and A be the reduction from A to A. We describe a decider A for A as follows.

poly time
= "On input w:

- Compute f(w).
- Run M on input f(w) and output whatever M outputs."

definition value \bar{e}

Language A is mapping reducible to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G. $O(\mathbf{k})$
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

 $O(\mathbf{k}^2)$

DEFINITION 7.18

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is <u>satisfiable</u> if ...

• ... there is some assignment of TRUE or FALSE (1 or 0) to its variables that makes the entire formula TRUE

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - x = 0, y = 1, z = 0

The Boolean Satisfiability Problem

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

- HW10 asks you to show that SAT is in NP
- What about *3SAT*?

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x ext{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combo of vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Has three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

The 3SAT Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$

Theorem: 3SAT is polynomial time reducible to CLIQUE.

 $\mathit{CLIQUE} = \{ \langle G, k \rangle | \ G \ \text{is an undirected graph with a k-clique} \}$

• Need poly time computable fn converting a 3cnf-formula ...

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

- ... to a graph containing a clique:
 - Each clause is a group of 3 nodes
 - Connect all nodes except:
 - Contradictory nodes
 - Nodes in the same group
- If $\phi \in 3SAT$
 - Each clause has a TRUE literal
 - Those are nodes in the clique!
 - eg $x_1 = 0$, $x_2 = 1$

- # literals = # nodes
- # edges poly in # nodes

NP-Completeness

Must look at langs in general, can't look at any single lang

DEFINITION 7.34

A language B is **NP-complete** if it satisfies two conditions:

- $\mathbf{1}$, B is in NP, and easy
- **2.** every A in NP is polynomial time reducible to B.

?????

How does this help the P = NP problem?

THEOREM 7.35 -----

If B is NP-complete and $B \in P$, then P = NP

Next time: The Cook-Levin Theorem

THEOREM 7.37 *SAT* is NP-complete

Check-in Quiz 11/30

On gradescope

End of Class Survey 11/30

See course website