The Cook-Levin Theorem (i.e., the first NP-Complete Problem) Wednesday, December 2, 2020

HW10 questions?

Announcements

• Chegg and other similar sites are now banned.

Today: The Cook-Levin Theorem

Hard part

THEOREM 7.37

SAT is NP-complete

DEFINITION 7.34

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

Reducing every NP language to SAT

How can we come up with reduction of some w to a Boolean formula if we don't know w?

How to prove a theorem about an entire <u>class</u> of languages?

We work with what we know about the langs in general

THEOREM 1.45 -----

- E.g, The class of regular languages is closed under the union operation.
 - PROOF uses the theorem that every reg lang has an NFA accepting it

```
Let N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) recognize A_1, and N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) recognize A_2.
```

Proof is a <u>algorithm</u> for constructing a union-recognizing NFA from any two NFAs

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

THEOREM 4.7 -----

- A_{CFG} is a decidable language. $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
 - Proof uses the fact that every CFG has a Chomsky Normal Form

What do we know about strings in **NP** langs?

- They are
 - Verified by a deterministic poly time verifier (NP definition)
 - Decided by a nondeterministic poly time <u>decider</u> (NTM) (Thm 7.20)

 Let's use this one

Review: Non-deterministic TMs

• Formally defined with states, transitions, alphabet ...

Idea: We don't know the specific language or strings in the language, but ...

... we know those strings must have an <u>accepting sequence of configurations!</u>

Turing machine is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$ transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.
- Computation can branch
- Each node in the tree represents a TM configuration
- Transitions specify valid configuration <u>sequences</u>

Accepting config sequence = Tableau

- $w = w_1 ... w_n$
- To simplify proof, assume configs start/end with #
- Some config must be accepting config
- At most n^k configs
- Each config has length n^k

Theorem: SAT is NP-complete

- Proof idea:
 - Give an algorithm that converts accepting tableaus to satisfiable formulas
- Thus every string in the NP lang will be mapped to a sat. formula
 - and vice versa

Resulting formulas will have <u>four</u> components: $\phi_{\rm cell} \wedge \phi_{\rm start} \wedge \phi_{\rm move} \wedge \phi_{\rm accept}$

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Tableau Terminology

• A tableau <u>cell</u> has coordinate i,j

• A cell has <u>symbol</u> $s \in C = Q \cup \Gamma \cup \{\#\}$

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- $4\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})_{e \text{ transition function}}$
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Formula Variables

• A tableau <u>cell</u> has coordinate i,i

 A cell has <u>symbol</u> $s \in C = Q \cup \Gamma \cup \{\#\}$

start configuration $||q_0||w_1||w_2|| \dots$ $|w_n|$ \sqcup second configuration cell n^k ation

Use these variables to create $\phi_{\rm cell} \wedge \phi_{\rm start} \wedge \phi_{\rm move} \wedge \phi_{\rm accept}$ such that: accepting tableau ⇔ satisfying assignment

- For every i,j,s create <u>variable</u> x_{i,i,s}
- Total variables =
 - Number of cells * |C| =
 - $n^{k*} n^{k*} |C| = O(n^{2k})$

- A Turing me
- Q, Σ, Γ are a
- For <u>accepting tableau</u>:
 - all four parts must be TRUE

where

- 1. Q is the
 - only one part must be FALSE
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- $4\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})_{e \text{ transition function}}$
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

variable for some

s must be TRUE

 $\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right]$ "The following "The variable And only one must be TRUE

for one s must

be TRUE"

- Does an accepting tableau correspond to a satisfiable (sub)formula?
 - Yes, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE

for every cell i,j"

- Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

- Does an <u>accepting tableau</u> correspond to a satisfiable (sub)formula?
 - Yes, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- Does a non-accepting tableau correspond to an unsatisfiable formula?
 - Not necessarily

accepting tableau: all four must be TRUE non-accepting tableau: one must be FALSE

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}} \underbrace{ ext{The state } q_{accept} \\ ext{must appear in some cell} }$$

- Does an accepting tableau correspond to a satisfiable (sub)formula?
 - Yes, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- Does a non-accepting tableau correspond to an unsatisfiable formula?
 - Yes, because it wont have q_{accept}

- Ensures that every configuration is <u>legal</u> according to the previous configuration and the TM's δ transitions
- Only need to verify every 2x3 "window"
 - Why?
 - · Because in one step, only the cell at the head can change
- E.g., if $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}$
 - Which are <u>legal</u>?

accepting tableau: all four must be TRUE non-accepting tableau: one must be FALSE

$$\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}$$

 $(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6})$

 $a_1,...,a_6$ is a legal window

- Does an accepting tableau correspond to a satisfiable (sub)formula?
 - Yes, assign $x_{i.i.s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

• Number of cells = $O(n^{2k})$

 $\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \quad \boxed{\mathbf{O}(\mathbf{n}^{2k})}$$

The variables in the start config, ANDed together

$$x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \boxed{\mathbf{0(n^k)}}$$

$$x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \boxed{\mathbf{O}(\mathbf{n}^{2k})}$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \boxed{\mathbf{O}(\mathbf{n}^{\mathbf{k}})}$$
$$x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$\phi_{
m accept} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{
m accept}} igvee_{
m must appear in some cell}$$
 The state q_{accept} must appear in some cell

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \boxed{\mathbf{O}(\mathbf{n}^{2k})}$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge$$

$$x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \boxed{\mathbf{0(n^k)}}$$

$$x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{accept}}}$$

$$\boxed{\mathbf{O}(\mathbf{n}^{2\mathbf{k}})}$$

$$\phi_{\text{move}} = \bigwedge_{1 \le i \le n^k, \ 1 \le j \le n^k} \text{(the } (i, j) \text{-window is legal)}$$

$$\boxed{\mathbf{O}(\mathbf{n}^{2k})}$$

Time complexity of the reduction $\frac{\text{Total:}}{\Omega(\mathbf{n}^{2k})}$

$$\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} (\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}}) \right) \right] \quad \mathbf{0}(\mathbf{n}^{2\mathbf{k}})$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \right] \quad \mathbf{0}(\mathbf{n}^{\mathbf{k}})$$

$$\phi_{\text{accept}} = \bigvee_{1 \leq i, j \leq n^k} x_{i,j,q_{\text{accept}}} \quad \mathbf{0}(\mathbf{n}^{2\mathbf{k}})$$

$$\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k} \left(\text{the } (i,j) \text{-window is legal} \right) \quad \mathbf{0}(\mathbf{n}^{2\mathbf{k}})$$

QED: SAT is NP-complete

THEOREM 7.36

known unknown

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

Proof:

- For every language A in NP, reduce A to C by:
 - First use the reduction from A to B
 - This exists because *B* is **NP**-Complete
 - Then *B* to *C*
 - This is given
- This runs in poly time because of the definition of NPcompleteness and poly time reducibility

To use this theorem, C must be in NP

Theorem: 3SAT is NP-complete.

- Proof: To use thm 7.36, must show poly time reduction from:
 - SAT (known to be NP-Complete) $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$
 - to 3SAT (known to be in NP) 3SAT = $\{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula}\}$
- Given an arbitrary SAT formula:
 - 1. First convert to CNF (an AND of OR clauses)
 - Use DeMorgan's Law to push negations onto literals

$$\neg(P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg(P \land Q) \iff (\neg P) \lor (\neg Q)$$

• Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$ O(n)

Then convert to 3cnf by adding new variables

$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$$

O(n)

Check-in Quiz 12/2

On gradescope

End of Class Survey 12/2

See course website