Even More NP-Complete Problems

Wednesday, December 9, 2020

HW11 questions?

<u>Announcements</u>

- HW11 finalized
 - Due Tues 12/15 11:59pm EST
- HW8 grades returned
- Please stop posting HW questions to Chegg
 - The answers arent even correct
- Stay tuned for extra credit announcement
 - · Most likely to be extra time to finish coding assignments
- Fill out Course Evaluation at end of class

NP-Complete problems, so far

• $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)

- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce from SAT)
- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduce from 3SAT)
- $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ (reduce from 3SAT) with a Hamiltonian path from s to $t\}$

General Strategy: Reducing from 3SAT

Create a computable function mapping formula to "gadgets":

- Clause → some "gadget", e.g.,
- Variable → another "gadget", e.g.,
 Gadget is typically used in two "opposite" ways:
 - When var is assigned TRUE, or
 - When var is assigned FALSE

Then connect "gadgets" according to clause literals:

- Literal x_i in clause $c_j \rightarrow \text{gadget } x_i$ "detours" to c_j
- Literal \overline{x}_i in clause $c_j \rightarrow \text{gadget } x_i$ "reverse detours" to c_j

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbb{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the <u>computable function</u> *f*:

- 4. Show it runs in poly time
- 5. Show Def 7.29 "iff" requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

 y_i and z_i :

The sum

 \mathbf{V}_{i} : \mathbf{I} + \mathbf{i} th digit = 1 \mathbf{Z}_{i} : \mathbf{I} + \mathbf{i} th digit = 1

Computable Fn: 3cnf $\rightarrow \langle S, t \rangle$

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots)$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Computable function f maps:
 - Variable $x_i \rightarrow two numbers y_i and z_i$
 - Clause $c_i \rightarrow two numbers g_i and h_i$
- Each number has max *l+k* digits:
- Sum is I 1s followed by k 3s

digit = 1					if c_j has x_i				$ \begin{array}{c c} $			
		1	2	3	4		1	c_1	c_2	./.	c_k	
	y_1	1	0	0	0		0	1	0	/	0	
	z_1	1	0	0	0	• • •	0	0	9	• • •	0	١
	y_2		1	0	0	• • •	0	0	/1	• • •	0	١
•	z_2		1	0	0		0	1	0		0	١
	y_3			1	0		0	1	1		0	١
	z_3			1	0		0	0	0		1	١
												١
	:					٠.	:	:		:		١
	·											١
	y_l						1	0	0	• • •	0	١
	z_l						1	0	0	• • •	0	
	g_1				ا ام ما			1	0	• • •	0	
	h_1		1,	g _j a	nd l	Ո _j		→ 1	0	• • •	0	١
	g_2			-)" (digit	. = 1			1	• • •	0	١
	h_2								1	• • •	0	ı
												ı
										٠.		ı
												ı
	g_k										1	
	h_k										1	
>	<i>t</i>	1	1	1	1		1	3	3		3	

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function f:

- 4. Show it runs in poly time
 - 5. Show Def 7.29 iff requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

Polynomial Time?

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots) \Longrightarrow$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Table size: (l + k)(2l + 2k)
 - Creating it requires constant number of passes over the table
 - Num variables *I* = at most 3*k*
- Total: $O(k^2)$

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0	• • •	0	1	0		0
z_1	1	0	0	0		0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
:					٠.	:	:			\vdots
y_l						1	0	0	• • •	0
z_l						1	0	0	• • •	0
g_1							1	0	• • •	0
h_1							1	0	• • •	0
g_2								1	• • •	0
h_2								1	• • •	0
									٠.	\vdots
										4
g_k										1
h_k										1
t	1	1	1	1		1	3	3	• • •	3

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function f:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \stackrel{f}{\longleftarrow} (S, t) \mid S = \{x_1, \dots, x_k\}$$

- 4. Show it runs in poly time
- 5. Show Def 7.29 iff requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

Each column:

- At least one 1
- At most 3 19

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums

S only

includes

one

=> If formula is satisfiable ...

- Sum t = 11 1s followed by k 3s
- Choose subset of S to include:
 - y_i if x_i = TRUE
 - \mathbf{z}_i if $\mathbf{x}_i = \text{FALSE}$
 - and some of g_i and h_i to make the sum t
- ... Then this subset of S must sum to t bc:
 - <u>Left digits</u>:
 - only one of y_i or z_i is in S
 - Right digits:
 - Top right: Each column sums to 1, 2, or 3
 - Because each clause has 3 literals
 - Bottom right:
 - Can always use g_i and/or h_i to make column sum to 3

		1	2	3	4		l	c_1	c_2	• • •	c_k		
	y_1	1	0	0	0		0	1	0	• • •	0		
/-	z_1	1	0	0	0		0	0	0		0		
	y_2		1	0	0		0	0	1		0		
	z_2		1	0	0		0	1	0		0		
	y_3			1	0		0	1	1		0		
	z_3			1	0		0	0	0		1		
						٠.		:		:	\vdots		
	y_l						1	0	0	• • •	0		
	z_l						1	0	0	• • •	0		
	g_1							1	0		0		
	h_1							1	0	• • •	0		
	g_2								1		0		
	h_2	L						1		0			
		So each column											
						r left			٠.	\vdots			
	·			dig	its)	is 1				•			
	g_k	_			Т					1			
	h_k				1					1			
	t	1	1	1	1		1	3	3 .	173	3		

Subset must have some number with 1 in each right column

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some sull

s only

includes

one

 $\leq \underline{\mathbf{If}}$ a subset of S sums to t ...

- It can only include either y_i or z_i
 - Because each <u>left digit column</u> must sum to
 - And no carrying is possible
- Also, since each <u>right digit column</u> must sum to 3:
 - And only 2 can come from g_i and h_i
 - Then for every right column, some y_i or z_i in the subset has a 1 in that column
- ... Then a satisfying assignment is:
 - $x_i = TRUE \text{ if } y_i \text{ in the subset}$
 - $x_i = FALSE \text{ if } z_i \text{ in the subset}$
- This is satisfying because:
 - Table was constructed so 1 in column c_i for y_i or z_i means that variable x_i satisfies clause c_i
 - We already determined, for every right column, some number in the subset has a 1 in the column
 - So all clauses are satisfied

Theorem: VERTEX-COVER is NP-complete.

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

- A <u>vertex cover</u> of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes
- Proof Sketch: Reduce 3SAT to VERTEX-COVER
- The <u>reduction</u> maps:
- Variable $x_i \rightarrow 2$ connected nodes
 - corresponding to the var and its negation, e.g.,
- Clause → 3 connected nodes
 - corresponding to its literals, e.g.,
- Additionally,
 - connect var and clause gadgets by ...
 - ... connecting nodes that correspond to the same literal

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Extra edges connecting variable and clause gadgets together

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Exercise:

Show that formula is satisfiable

Graph has a vertex cover with k nodes

- Let formula have ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l

- then show there is a k-cover where k = m + 2l
- Nodes in the cover:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - <u>Total</u> = *m* + 2*l*

NO Quiz 12/9!

NO Survey 12/9!

Fill out course evaluation.