CS420
Computing With Finite Automata

Tuesday, September 13, 2022
UMass Boston Computer Science

#/(/(0«/(06/7(@/(&?

« HW 0 in extended, due Wed 11:59pm
« HW 1 released soon

 Please ask all HW questions on Piazza!
* So all course staff can see,
« and entire class can benefit
 Please do not directly email course staff with HW questions

* TA: Sean Rasku-Casas
- Office Hours Mondays 12:30-2pm, in the TA room (McCormack 31 floor)

lst Time: FINIte Automata Formal Definition

DEFINITION

deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Also called a Deterministic Finite Automata (DFA)
(will be important later)

HINT: to better understand
the math, always work out

last Tine: FSM COmputation Rules |indgividuatexamptes

Informally Formally (ie., mathematically)
 “Program” = a finite automata M = (Q7 >, 0, qo, F)

 Input = string of chars, eg “1101” « W = WiW3 *** Wy

) i} Define variabtes r,i =0 ... n, representing
Toruna program: sequence of states in the computation

« Start in “start state” ro = qo
e.g., i=1,r; =6(ry,wy) | | Iy =0(r, wy) ...
r; =0(ri_1,w;), fori=1,...,n

 Repeat:

 Read 1 char;
« Change state according to the transition table

Let's come up with nicer notation to represent this part

* Result= _ * M accepts w it
» Accept if last state is “Accept” state , :
- Reject otherwise sequence of states 1, 71,...,7, In) exists . ..

This is still a little verbose / informal | with 7, € F’

d: Q X ¥—Q is the transition function

An Extended Transition Function

*=%0 or more”

Define extended transition function: 0:Q XX —Q
 Domain:
« Beginning state ¢ €) “(not necessarily the start state) " = set of all strings!
* Inputstring w = wiws -+ Wy, where w; € X
* Range:

- Ending state (not necessarily an accept state)
(Defined recursively)

* Base case.: ...

Recursive Definitions

function factorial(n)

{

Base case if (0) Use of function

before it's defined!
return 1;

Recursive case else . -
Recursive call with

“smaller” argument

return factorial

« Why Is this allowed?
e |t's a feature (i.e., an axiom) of the programming language

« Why does this work?
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either: | Use of definition
before it's defined!
Base case « Zero, or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

 Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

» Successor of Successor of Successor of Zero (= “three”) ...

d: Q X ¥—Q is the transition function

An Extended Transition Function

Define extended transition function: 0:Q XX —Q
e Domain:
« Beginning state ¢ €) (not necessarily the start state)
* Inputstring w = wiw2 - Wp where w; € X
* Range:

- Ending state (not necessarily an accept state)

(Defined recursively)

Empty string

e Base case: 5 g‘ — : Remaining chars
=D (Qa) q nonEmpty string | First char (“smaller argument”)

* Recursive case;: 5(617 w) — 8(5(% wl)a wy - - - wn)

Recursive call Single transition step

FSM Computation Model

Informally Formally (ie, mathematically)
 “Program” = a finite automata M = (Q’ 32,0, qo, F)

 Input = string of chars, eg “1101” e W = WiW3 *++ Wy

To run a “program”:
- Start in “start state” . g

— 4o
* Repeat: c i =0(ri_1,w;), fori=1,...,n

 Read 1 char;

« Change state according to the transition table

Let's come up with nicer notation to represent this part

* Result= . * M accepts w it
« “Accept” If last state Is “Accept” state , :
. “Reject” otherwise sequence of states 1, 71,...,7, In) exists . ..

with r,, € F
49

FSM Computation Model

Informally Formally (ie, mathematically)
- “Program” = a finite automata - M = (Q,X%,0,q0, F)
 Input = string of chars, eg “1101” « W = WiW3 *** Wy

To run a “program”:

« Start in “start state” * 70 = qo
* Repeat: c i =0(ri_1,w;), fori=1,...,n

 Read 1 char;
« Change state according to the transition table

* Result= . M accepts w it 5((]0,?1)) c I
« “Accept” if last state is “Accept” state

. “Reject” otherwise sequence of states 1,71, ..., 7, in () exists . .

with r,, € F

Definition of Accepting Computations

An accepting computation, for FSM M =(Q, Z, 6, g,, F) and string w:
1. starts in the start state q,

2. goes through a valid sequence of states according to 6
e this implies that all w, € X

3. endsin an accept state

All 3 must be true for a computation
to be an accepting computation!

M accepts w if S(qo, w) € F

Accepting Computation or Not?

.5 (q1,1101)

* yes

. 5 (q1,110)

_* No (doesn’'t end in accept state)

-) (g2, 101)

« No (doesn't start in start state)

-5 (q1,123)

« No (doesn’t follow delta transition function)

Languages and Strings

A language is a set of strings

« A string is a finite sequence of symbols from an alphabet

« An alphabet is a non-empty finite set of symbols

¥ ={0,1}

22 — {a?b? de?e)fﬁgﬁhji?j?kﬁlﬁmjnﬁojquirjSﬁtﬁu?V7W3X?y7z}

Computation and Languages

« The language of a machine is the set of all strings that it accepts
* £.g, An FSM M accepts w it 5((]0, w) € F

e Language of M = L(M) = {w | M accepts w}

“the set of all ...” “such that...”

Language Terminology

* M accepts w string

* M recognizes langnage A Set of strings
it A = {w| M accepts w}

Computation and Classes of Languages

* The language of a machine is the set of all strings that it accepts

« A computation model is equivalent to the set of machines it defines

« E.g, all possible FSMs are a computation model

* Thus: a computation model is also equivalent to a set of languages

Regular Languages: Definition

f a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

A language is a set of strings.

M recognizes language A
it A= {w| M accepts w}

A Language, Regular or Not?

e If given: a Finite Automaton M
« We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

e |f given: a Language A
* Is A iIs a regular language?
« Not necessarily!
« How do we determine, i.e., prove, that A is a regular language?

Kinds of Mathematical Proof

« Deductive Proof
- Start with known facts (i.e., premises)
 Use logical inference rules to reach new conclusions

An Inference Rule: Modus Ponens

Premises
 [f Pthen Q
* Pis true
Conclusion

* 0 must also be true ~I DON'T KNOW WHAT MODUS
=== PONENSIS

‘un AT THIS BOINTT MiTo0
& NnrRniDTOISKEY 1

An Inference Rule: Modus Ponens

Premises Example Premises

« [f Pthen Q « |f there Is an FSM recognizing language A,

e Pis true then A4 is a regular language

Conclusion * We know an FSM M where L(M) = A
Conclusion

* 0 must also be true
« AIs aregular language!

A Language, Regular or Not?

e If given: a Finite Automaton M
« We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) recognizes a language,
then that language is called a regular language.

e |f given: a Language A
* Is A iIs a regular language?
* Not necessarily!
« How do we determine, i.e., prove, that A is a regular language?

Create an FSM recognizing A!

67

Designing Finite Automata: Tips
 Input may only be read once, one char at a time
« Must decide accept/reject after that

e States = the machine’s memory!
e #t states must be decided in advance
e So think about what information must be remembered.

» Every state/symbol pair must have a transition (for DFAS)

Design a DFA: accept strs with odd

e States:

e 2 states:
e seen even 1s so far

 seen odds 1s so far

* Alphabet: 0 and 1
0
A A
e Transitions: @.@
1 O 1 O

- Start / Accept states: @.

1

1s

INn-class exercise

 Prove: the following language Is a regular language:

* A={w | w has exactly three 1’s}
* |.e.,, design a finite automata that recognizes it!

« Where 2= {0, 1},

DEFINITION

A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where

- Remember: 1. Q is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

In-class exercise Solution

Design finite automata recognizing:
* {w | w has exactly three 1’s}

States:
* Need one state to represent how many 1's seen so far

* Q=1{d¢ 91, 92 q3 4.}
Alphabet: £= {0, 1}

()

Transitions:

Start state:
[) qO

Accept states:

* {43}

So finite automata are
used to recognize simple
string patterns?

Yes!

Have you ever used a
programming language
feature to recognize
simple string patterns?

O

Check-in Quiz 9/13

On gradescope

