CS420 Computing With Finite Automata

Tuesday, September 13, 2022 UMass Boston Computer Science

Announcements

- HW 0 in extended, due Wed 11:59pm
- HW 1 released soon
- Please ask all HW questions on Piazza!
 - So all course staff can see,
 - and entire class can benefit
 - Please do not directly email course staff with HW questions
- TA: Sean Rasku-Casas
 - Office Hours Mondays 12:30-2pm, in the TA room (McCormack 3rd floor)

Last Time: Finite Automata Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)**

(will be important later)

Last Time: FSM Computation Rules

HINT: to better understand the math, always work out individual examples

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - Change state according to the <u>transition</u> table
- Result =
 - Accept if last state is "Accept" state
 - Reject otherwise

Formally (i.e., mathematically)

•
$$M = (Q, \Sigma, \delta, q_0, F)$$

• $w = w_1 w_2 \cdots w_n$

Define variables r_i , $i = 0 \dots n$, representing sequence of states in the computation

•
$$r_0 = q_0$$

e.g., $i=1, r_1 = \delta(r_0, w_1)$ $r_2 = \delta(r_1, w_2)$...

•
$$r_i = \overline{\delta(r_{i-1}, w_i)}$$
, for $i = 1, \dots, n$

Let's come up with **nicer notation** to represent this part

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists ...

This is still a little verbose / informal with $r_n \in F_n$

An Extended Transition Function

* = "0 or more"

 Σ^* = set of all strings!

Define **extended transition function**:

 $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Ending state (not necessarily an accept state)

(Defined recursively)

• <u>Base</u> case: ...

1. 1.

Recursive Definitions

- Why is this <u>allowed</u>?
 - It's a **feature** (i.e., an **axiom**) of the **programming language**
- Why does this work?
 - Because the recursive call always has a "smaller" argument ...
 - ... and so eventually reaches the base case and stops

Recursive Definitions

Examples

- Zero
- Successor of Zero (= "one")
- Successor of Successor of Zero (= "two")
- Successor of Successor of Successor of Zero (= "three") ...

An Extended Transition Function

Define **extended transition function**:

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain:
 - Beginning state $q \in Q$ (not necessarily the start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Ending state (not necessarily an accept state)

(Defined recursively)

Empty string

• Base case: $\hat{\delta}(q,\varepsilon)=q$ nonEmpty string First char

Remaining chars ("smaller argument")

• Recursive case: $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1), w_2 \cdots w_n)$

Recursive cal

Single transition step

FSM Computation Model

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

Let's come up with **nicer notation** to represent this part

FSM Computation Model

Informally

- "Program" = a finite automata
- Input = string of chars, e.g. "1101"

To run a "program":

- Start in "start state"
- Repeat:
 - Read 1 char;
 - <u>Change</u> state according to the <u>transition</u> table
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if $\hat{\delta}(q_0,w) \in F$ sequence of states r_0,r_1,\ldots,r_n in Q exists \ldots with $r_n \in F_{50}$

Definition of Accepting Computations

An accepting computation, for FSM $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

- 1. starts in the start state q_0
- 2. goes through a valid sequence of states according to δ
 - this implies that all $w_i \in \Sigma$
- 3. ends in an accept state

All 3 must be true for a computation to be an accepting computation!

M accepts w if $\hat{\delta}(q_0, w) \in F$

Accepting Computation or Not?

- $oldsymbol{\cdot}\hat{\delta}$ (q1, 1101)
- \cdot yes $\hat{\delta}$ (q1, 110)
 - No (doesn't end in accept state)
- $\cdot\delta$ (q2, 101)
 - No (doesn't start in start state)
- $\cdot \hat{\delta}$ (q1, 123)
 - No (doesn't follow delta transition function)

Languages and Strings

- A language is a <u>set</u> of strings
- A string is a <u>finite</u> <u>sequence</u> of <u>symbols</u> from an <u>alphabet</u>
- An alphabet is a <u>non-empty finite set</u> of symbols

$$\Sigma_1 = \{ \texttt{0,1} \}$$

$$\Sigma_2 = \{ \texttt{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} \}$$

Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., An **FSM** M accepts w if $\hat{\delta}(q_0,w) \in F$

• Language of $M = L(M) = \{w \mid M \text{ accepts } w\}$

"the set of all ..."

"such that ..."

Language Terminology

• M accepts $w \leftarrow -$ string

• M recognizes language A Set of strings $\text{if } A = \{w | \ M \text{ accepts } w \}$

Computation and Classes of Languages

- The language of a machine is the set of all strings that it accepts
- A computation model is equivalent to the set of machines it defines
- E.g., all possible FSMs are a computation model
- Thus: a computation model is also equivalent to a set of languages

Regular Languages: Definition

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a **regular language**.

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

A Language, Regular or Not?

- If given: a Finite Automaton M
 - We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

- If given: a Language A
 - Is A is a regular language?
 - Not necessarily!
 - How do we determine, i.e., *prove*, that *A* is a regular language?

Kinds of Mathematical Proof

- Deductive Proof
 - Start with known facts (i.e., premises)
 - Use logical inference rules to reach new conclusions

An Inference Rule: Modus Ponens

Premises

- If P then Q
- P is true

Conclusion

Q must also be true

An Inference Rule: Modus Ponens

Premises

- If P then Q
- *P* is true

Conclusion

Q must also be true

Example Premises

- If there is an FSM recognizing language A, then A is a regular language
- We know an FSM M where L(M) = A

Conclusion

A is a regular language!

A Language, Regular or Not?

- If given: a Finite Automaton M
 - We know: L(M), the language recognized by M, is a regular language

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

- If given: a Language A
 - Is A is a regular language?
 - Not necessarily!
 - How do we determine, i.e., *prove*, that *A* is a regular language?

Create an FSM recognizing A!

Designing Finite Automata: Tips

- Input may only be read once, one char at a time
- Must decide accept/reject after that
- States = the machine's memory!
 - # states must be decided in advance
 - So think about what information must be remembered.
- Every state/symbol pair must have a transition (for DFAs)

Design a DFA: accept strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

- Alphabet: 0 and 1
- Transitions:

In-class exercise

- Prove: the following language is a regular language:
 - $A = \{w \mid w \text{ has exactly three 1's}\}$
 - i.e., design a finite automata that recognizes it!
- Where $\Sigma = \{0, 1\}$,

• Remember:

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

In-class exercise Solution

- Design finite automata recognizing:
 - {w | w has exactly three 1's}
- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:

So finite automata are used to <u>recognize simple</u> <u>string patterns</u>?

Yes!

Have you ever used a programming language feature to <u>recognize</u> <u>simple string patterns</u>?

- Start state:
 - q₀
- Accept states:
 - $\{q_3\}$

Check-in Quiz 9/13

On gradescope