CS420 Regular Languages

Thursday, September 15, 2023 UMass Boston Computer Science

Announcements

- HW 0 in
 - Due Wed 9/13 11:59pm EST
- HW 1 out
 - Due Sun 9/25 11:59pm EST

Last Time: Computation and Languages

- The language of a machine is the set of all strings that it accepts
- A computation model is equivalent to the set of machines it defines
 - E.g., all possible Finite State Automata are a computation model

DEFINITIONA *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where 1. Q is a finite set called the *states*, 2. Σ is a finite set called the *alphabet*, 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, 4. $q_0 \in Q$ is the *start state*, and 5. $F \subseteq Q$ is the *set of accept states*.

Thus: a computation model is also equivalent to a set of languages

Last Time: Regular Languages: Definition

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

Last Time: A Language, Regular or Not?

- If given: a Finite Automaton M
 - We know: L(M), the language recognized by M, is a regular language
 - Because:

If a finite automaton (FSM) <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

- If given: a Language A
 - Is A is a regular language?
 - Not necessarily!
 - How do we determine, i.e., *prove*, that *A* is a regular language?

An Inference Rule: Modus Ponens

Premises

- If P then Q
- P is true

Conclusion

• Q is true

Example Premises

- If an FSM recognizes language A, then A is a regular language
- There is an FSM M where L(M) = A

Conclusion

... then we need to show

A is a regular language! ←

If we want to prove ...

Last Time: Designing Finite Automata: Tips

- States = the machine's memory!
 - So think about what information must be remembered.
 - (# states must be decided in advance)
- Input may only be read once, one char at a time
- Must decide accept/reject after that
- Every state/symbol pair must have a transition (for DFAs)

Design a DFA: accept strings with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

- Alphabet: 0 and 1
- Transitions:

In-class exercise

- Prove: the following language is a regular language:
 - $A = \{w \mid w \text{ has exactly three 1's}\}$
 - i.e., design a finite automata that recognizes it!
- Where $\Sigma = \{0, 1\}$,

• Remember:

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

In-class exercise Solution

- Design finite automata recognizing:
 - {w | w has exactly three 1's}
- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:

So finite automata are used to <u>recognize simple</u> <u>string patterns</u>?

Yes!

Have you ever used a programming language feature to <u>recognize</u> <u>simple string patterns</u>?

- Start state:
 - q₀
- Accept states:
 - $\{q_3\}$

So Far: Finite State Automaton, a.k.a. DFAs

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta:/Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.
- Key characteristic:
 - Has a finite number of states
 - I.e., a computer or program with access to a single cell of memory,
 - Where: # states = the possible symbols that can be written to memory
- Often used for text matching

Combining DFAs?

To match <u>all</u> requirements, <u>combine</u> smaller DFAs into one big DFA?

https://www.umb.edu/it/password

(We do this with programs all the time)

Password Checker DFAs

What if this is not a DFA?

Want to be able to easily <u>combine</u> DFAs, i.e., <u>composability</u>

We want these operations:

 $OR : DFA \times DFA \rightarrow DFA$

AND: DFA \times DFA \rightarrow DFA

To <u>combine more than once</u>, operations must be **closed!**

"Closed" Operations

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>

- Set of Natural numbers = {0, 1, 2, ...}
 - <u>Closed</u> under addition:
 - if x and y are Natural numbers,
 - then z = x + y is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no
- Integers = $\{..., -2, -1, 0, 1, 2, ...\}$
 - <u>Closed</u> under addition and multiplication
 - Closed under subtraction?
 - yes
 - · Closed under division?
 - · no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}$
 - Closed under division?
 - No?
 - Yes if *z* !=0

Why Care About Closed Ops on Reg Langs?

- Closed operations preserve "regularness"
- I.e., it preserves the same computation model!
- This way, a "combined" machine can be "combined" again!

 $\frac{\text{We want:}}{\text{OR, AND: DFA} \times \text{DFA} \rightarrow \text{DFA}}$

So this semester, we will look for operations that are <u>closed!</u>

Password Checker: "OR" = "Union"

Password Checker: "OR" = "Union"

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \dots, z\}$.

If
$$A = \{ good, bad \}$$
 and $B = \{ boy, girl \}$, then

$$A \cup B = \{ good, bad, boy, girl \}$$

(A set is **closed** under an operation if the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>)

A Closed Operation: Union

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- How do we prove that a language is regular?
- A language is called a *regular language* if some finite automaton recognizes it.

- Create a DFA recognizing it!
- So to prove this theorem ... create a DFA that recognizes $A_1 \cup A_2$

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: M "runs" its input on both M_1 and M_2 at the same time
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- A *finite automaton* is a 5-tuple (Q,Σ,δ,q_0,F) , where $a)=\left(\delta_1(r_1,a),\delta_2(r_2,a)\right)$ a step in M_1 , a step in M_2
 - **1.** Q is a finite set called the *states*,
 - 2. Σ is a finite set called the *alphabet*,
 - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
 - **4.** $q_0 \in Q$ is the **start state**, and
 - **5.** $F \subseteq Q$ is the **set of accept states**.

Proof

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1\cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- M transition fn: $\deltaig((r_1,r_2),aig)=ig(\delta_1(r_1,a),\delta_2(r_2,a)ig)$ a step in M_1 , a step in M_2
- *M* start state: (q_1, q_2)

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- M transition fn: $\delta((r_1,r_2),a)=\left(\delta_1(r_1,a),\delta_2(r_2,a)\right)$ a step in M_1 , a step in M_2
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

Remember:
Accept states must
be subset of *Q*

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \dots, z\}$.

If $A = \{ \text{good}, \text{bad} \}$ and $B = \{ \text{boy}, \text{girl} \}$, then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - From DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

 M_2

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$
- But if M sees ab as first part of input ...
- *M* must decide to <u>either</u>:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct *M* to recognize $A \circ B = \{abcde, abccde\}$
- But if M sees ab as first part of input ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is abc cde)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab | abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct *M* to recognize $A \triangleleft B = \{abcde, abccde\}$
- But if M sees ab as first part of input...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is abccde)
 - or switch to M_2 (correct, if full input is **abcde**)
- But to recognize $A \circ B$, it needs to handle both cases!!

A DFA can't do this!

(We need a new kind of machine)

Check-in Quiz 9/15

On gradescope