UMB CS 420

Regular Expressions
Tuesday, October 4, 2022

Expressions
Small Reqular Large
Expression Expression Expression

o o U

$4.23 NS\ \d{2Y/ $6.23

%/{/{0«/{0@#(@/{13’

« HW 2 in
+Bue-Sun-104211:59pm-EST

* HW 3 out
« Due Sun 10/9 11:59pm EST

 Sean’s office hours
* Mon 4-5pm EST (McCormack 3™ floor room 139)

« HW 1 issues — many submitted solutions do not answer the question
« Example Question: “Prove that language L is regular”
« Example Good Answer: “Language L is regular because ..."
« Example Bad Answer: “Here are some sets of stuff, called Q, %, ...”

last Tie: Why These (Closed) Operations?

e Union
e Concat
e Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these operations!

$ fa Regular Lan

(NFA/DFA)

State diagram

1

1.

Formal
description

2.

1. Q ={q1, 92, g3},
2. ¥ ={0,1},
3.) is described as

4. ¢ is the start state
5. F ={q2}

Our Running Analogy:

0

0 1 :
(doesn't fit)
q1 | 41 g2
q2 | 43 g2
q3 | 42 g2

- Class of regular languages ~ a “programming language”

- One regular language

3.

2500127

~a “program”

Need a more concise
(textual) notation??

guage Representations

Actually, it's a real
programming language:
for text search

Find and Replace

=} Quick Find ~ | A% Quick Replace ~

Finé\what:

M = (Q')E? 57 QUaF) ???
Replace with:
Z=\1;

Look in:

l Current Project

IZ] Find options
| Match case
|| Match whole word
Search up

[rjuse:

Regular expressions

Find Next 1 ‘ Replace

‘ Replace All

|

Regu

ar Expressions:

A WIC

(inside

e Unix
* Perl

*)JavVa

L

* Python

ely Used Programming Language
other programming languages)

NAME

perlre - Perl regular expressions b

REP(1) General Commands Manual GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

EYNOPSIS
grep [OPTIONSE PATTERN [EFILE.Q.]
DESCRIPTION ol i

DESCRIPTION
grep searches the named input EILEs (or standard input if no files are
. . . . named, or if a single hyphen-minus (-) is given as file name) for lines
This page describes the syntax of regular expressions in Perl. containing a match to the given PATTERN. By default, grep prints the

matching lines.

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Quil

Table of Contents re — Regular expression operations

re — Regular expression

operations
S e lsunsy Source code: Lib/re.py
Syntax .
= Regulal vides regular expression matching operations similar to those found in Perl.

Class Pattern

java.lang.Object

java.util.regex.Pattern
272

Why These (Closed) Operations?

e Union
e Concat
e Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these operations!

The are used to define regular expressions!

273

Regular Expressions: Formal Definition

R is a regular expression if R is — :
This Is a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where R; and R are regular expressions,
. (R1 0 R2), where Ry and R» are regular expressions, or
. (R}), where R; is a regular expression.

275

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: " This is a recursive definition:
ode { 4 W | Node used before it's defined

- base case and)
_ mauEe caee data; > (but must be “smaller”)
Node next;

(with a “smaller” object)

Regular Expressions: Formal Definition

R is a regular expression if R is
1. a for some a in the alphabet 3, (A lang containing a) length-1 string

3 Base 2 l . n :
Cases . €, | (Alang containing) the empty string
3. 0, | Theempty set (ie, a lang containing no strings)
union —~4, (R; U R»), where R; and R are regular expressions, :
, 3 Recursive
concat 5, (R; o R2), where Ry and R are regular expressions, or | cases
star 6. (R]), where R; is a regular expression.

Regular Expression: Concrete Example

Entire regular expr: language whose
strings come from these languages
concat’ed (implicit) together

the language {“0”, 1"} (O U1) 0* the language {*, "0, “00%, ...}

the language {“0”} the language {“1"}

» Operator Precedence:
« Parentheses
« Kleene Star
» Concat (sometimes use o, sometimes implicit)Rif,Z'fi”:f;?ffil"aﬁfaﬁetE,
« Union 2 .

R1 U R;), where R; and R; are regular expressions,

3.
4., (
5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.

Regular Expressions = Regular Langs?

R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. €,

@7

3 Base
Cases

3.
3 Recursive 4. (R1 U Ry), where R; and R; are regular expressions,
Cases 5. (R1 o Ra2), where Ry and R» are regular expressions, or
6. (

RY), where R; is a regular expression.

Any regular language can be constructed from:
base cases + union, concat, and Kleene star

(But we have to prove it)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression

& If a language Is described by a reg expression, it Is regular

(Easier) How to show that a
+ To prove this part: cONvert reg expr — equivalent NFA! language Is regular?

* (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression
(Harder)

- To prove this part: Convert an DFA or NFA — equivalent Regular Expression
* To do so, we first need another kind of finite automata: a GNFA

&< If a language Is described by a reg expression, it Is regular
(Easier)
« Convert the regular expression — an equivalent NFA!

Generalized NFAs (GNFASs)

plain NFA
ab U ba = GNFA with single char

regular expr transitions

Goal: convert GNFAs
to Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function

On GNFA input G:

e If G has 2 states, return the regular expression (on transition),
e.8. Equivalent regular expression

@ (Ry) (Ro)* (R3) U (Ry) —

Could there be
less than 2 states?

GNFA>RegEXpr Preprocessing

* First, modify input machine to have:

Does this change the

ine?
. New start state: language of the machine?

« No incoming transitions
e ectransition to old start state

* New, single accept state:
« With e transitions from old accept states

GNFA->RegExpr function (recursive)

On GNFA input G:
Base

case |* [T G has 2 states, return the regular expression (from transition),
eg.

0, (Ry) (Ry)* (R3) U (Ry)
Recursive Z Recursive definitions have;:
Case

- base case and
- recursive case
e Flse: (with a “smaller” object)

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’
« Recursively call GNFA»RegExpr(G)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
before and repeat until only 2 states remain

GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before

GNFA->RegExpr: “Rip/Repair” step

After: still two “paths” from g; to g;
1. Not through q,,

Iy

Rl @
R

2

before

2. Through g,

T~

(121) (Ro)™ (123)

O

after

U (12y)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through q,;, has 3 transitions

- One s self loop

GNFAéRegExpr: “Rip/Repair” step

After:

q;

Rl @
R

2

concat

before

Before:

Self loop becomes star operation
Others are concat’ed together

(121) (Ro)™ (123)

U (Ry)

after

Star operation

path through q,;, has 3 transitions

One is self loop

GNFA->RegExpr: Rip/Repair “Correctness”

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

before

GNFA>RegExpr “Correctness”

« “Correct” / “Equivalent” means:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

* .e, GNFA»RegEXxpr must not change the language!
 Key step: the rip/repair step

GNFA->RegExpr: Rip/Re

Must show these are
equivalent

R, @(Ro (Ro)* (R3)
(]
e ‘ after

nalr “Correctness”

U ()

Must prove:

2

before

R, R,
e 2 Ccases:
@ 1.
R

2.

« Every string accepted before, is accepted after

Accepted string does not go through q,;,
M Acceptance unchanged (both use R, transition part)

String|goes through q;,

« Acceptance unchanged?

V+ Yes, via our previous reasoning

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

i « Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

< If a language Is described by a regular expr, it is regular
V] « Convert regular expression — equiv NFA!

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

How to Prove A Language Is Regular?

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3lishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Kinds of Mathematical Proof

 Deductive proof (from before)
e Starting from assumptions and known definitions,
« Reach conclusion by making logical inferences

e Inductive proof (now)

« Use this when working with recursive definitions

In-Class quiz 10/4

See gradescope

