UMB CS 420 Regular Expressions

Tuesday, October 4, 2022

Announcements

- HW 2 in
 - Due Sun 10/2 11:59pm EST
- HW 3 out
 - Due Sun 10/9 11:59pm EST
- Sean's office hours
 - Mon 4-5pm EST (McCormack 3rd floor room 139)
- HW 1 issues many submitted solutions do not answer the question
 - Example Question: "Prove that language L is regular"
 - Example Good Answer: "Language L is regular because ..."
 - Example Bad Answer: "Here are some sets of stuff, called $Q, \Sigma, ...$ "

Last Time: Why These (Closed) Operations?

- Union
- Concat
- Kleene star

All regular languages can be constructed from:

- single-char strings, and
- these operations!

So Far: Regular Language Representations

(doesn't fit)

Formal description

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \end{array}$$

3. δ is described as

J. 0 15 described as

4.
$$q_1$$
 is the start state

5.
$$F = \{q_2\}$$

Our Running Analogy:

- Class of regular languages ~ a "programming language"
- <u>One</u> **regular language** ~ a "program"
- ?3. $\Sigma^* 001\Sigma^*$

Need a more concise (textual) notation??

Actually, it's a real programming language: for text search

Regular Expressions: A Widely Used Programming Language (inside other programming languages)

- Unix
- Perl
- Python
- Java

Why These (Closed) Operations?

- Union
- Concat
- Kleene star

All regular languages can be constructed from:

- single-char strings, and
- these operations!

The are used to define regular expressions!

Regular Expressions: Formal Definition

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

This is a <u>recursive</u> definition

Recursive Definitions

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}
```

This is a <u>recursive definition:</u>
Node used before it's defined
(but must be "smaller")

Regular Expressions: Formal Definition

Regular Expression: Concrete Example

• Operator <u>Precedence</u>:

- Parentheses
- Kleene Star
- Concat (sometimes use o, sometimes implicit)
- Union

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expressions = Regular Langs?

R is a **regular expression** if R is

1. a for some a in the alphabet Σ ,

3 Base Cases

- $2. \ \varepsilon,$
- **3.** ∅,

3 Recursive Cases

- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Any regular language can be constructed from: base cases + union, concat, and Kleene star

(But we have to prove it)

Thm: A Lang is Regular iff Some Reg Expr Describes It

 \Rightarrow If a language is regular, it is described by a reg expression

← If a language is described by a reg expression, it is regular

(Easier)

To prove this part: convert reg expr → equivalent NFA!

How to show that a language is regular?

• (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegExpr→NFA

R is a *regular expression* if R is

1. a for some a in the alphabet Σ ,

5. $(R_1 \circ R_2)$, where R_1 and R_2 and

6. (R_1^*) , where R_1 is a regular exp

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a reg expression (Harder)
 - To prove this part: Convert an DFA or NFA → equivalent Regular Expression
 - To do so, we first need another kind of finite automata: a GNFA
- ← If a language is described by a reg expression, it is regular (Easier)
- Convert the regular expression → an equivalent NFA!

Generalized NFAs (GNFAs)

• GNFA = NFA with regular expression transitions

GNFA→RegExpr function

On **GNFA** input *G*:

• If G has 2 states, return the regular expression (on transition),

e.g.:

Could there be less than 2 states?

GNFA→RegExpr Preprocessing

• First, modify input machine to have:

Does this change the language of the machine?

- New start state:
 - No incoming transitions
 - ε transition to old start state

- New, single accept state:
 - With ϵ transitions from old accept states

GNFA→RegExpr function (recursive)

On **GNFA** input *G*:

Base Case

• If *G* has 2 states, return the regular expression (from transition), e.g.:

Recursive Case

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

before

To <u>convert</u> a GNFA to a regular expression: "rip out" state, then "repair", and repeat until only 2 states remain

before

before

One is self loop

290

GNFA→RegExpr: Rip/Repair "Correctness"

before

 q_j

GNFA→RegExpr "Correctness"

• "Correct" / "Equivalent" means:

LangOf (
$$G$$
) = LangOf ($GNFA \rightarrow RegExpr(G)$)

- i.e., GNFA→RegExpr must not change the language!
 - Key step: the rip/repair step

GNFA→RegExpr: Rip/Repair "Correctness"

before

Must prove:

 q_i

- Every string accepted before, is accepted after
- 2 cases:
 - 1. Accepted string does not go through $q_{\rm rin}$

 $(R_1) (R_2)^* (R_3) \cup (R_4)$

after

- $\overline{\mathbf{V}}$ Acceptance unchanged (both use R_4 transition part)
- 2. String goes through q_{rin}
 - Acceptance unchanged?
 - Yes, via our previous reasoning

 q_j

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a regular expr Need to convert DFA or NFA to Regular Expression ...
- Use GNFA→RegExpr to convert GNFA → equiv regular expression!
- ← If a language is described by a regular expr, it is regular
- ✓ Convert regular expression → equiv NFA!

Now we may use regular expressions to represent regular langs. So a regular

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

So we also have another way to prove things about regular languages!

How to Prove A Language Is Regular?

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Kinds of Mathematical Proof

- **Deductive proof** (from before)
 - Starting from assumptions and known definitions,
 - Reach conclusion by making logical inferences
- Inductive proof (now)
 - ...
 - Use this when working with <u>recursive</u> definitions

In-Class quiz 10/4

See gradescope