1.2. INTRODUCTION TO FORMAL PROOF)

When interpreting such expressions, we only need to know that [A-Z]
represents a range of characters from capital “A” to capital “Z” (i.e., any
capital letter), and [] is used to represent the blank character alone.
Also, the symbol * represents “any number of” the preceding expression.
Parentheses are used to group components of the expression; they do not
represent characters of the text described.

1.1.3 Automata and Complexity

Automata are essential for the study of the limits of computation. As we
mentioned in the introduction to the chapter, there are two important issues:

1. What can a computer do at all? This study is called “decidability,” and
the problems that can be solved by computer are called “decidable.” This
topic is addressed in Chapter 9.

2. What can a computer do efficiently? This study is called “intractabil-
ity,” and the problems that can be solved by a computer using no more
time than some slowly growing function of the size of the input are called
“tractable.” Often, we take all polynomial functions to be “slowly grow-
ing,” while functions that grow faster than any polynomial are deemed to
grow too fast. The subject is studied in Chapter 10.

1.2 Introduction to Formal Proof

If you studied plane geometry in high school any time before the 1990’s, you
most likely had to do some detailed “deductive proofs,” where you showed
the truth of a statement by a detailed sequence of steps and reasons. While
geometry has its practical side (e.g., you need to know the rule for computing
the area of a rectangle if you need to buy the correct amount of carpet for a
room), the study of formal proof methodologies was at least as important a
reason for covering this branch of mathematics in high school.

In the USA of the 1990’s it became popular to teach proof as a matter
of personal feelings about the statement. While it is good to feel the truth
of a statement you need to use, important techniques of proof are no longer
mastered in high school. Yet proof is something that every computer scientist
needs to understand. Some computer scientists take the extreme view that a
formal proof of the correctness of a program should go hand-in-hand with the
writing of the program itself. We doubt that doing so is productive. On the
other hand, there are those who say that proof has no place in the discipline of
programming. The slogan “if you are not sure your program is correct, run it
and see” is commonly offered by this camp.

Our position is between these two extremes. Testing programs is surely
essential. However, testing goes only so far, since you cannot try your program
on every input. More importantly, if your program is complex — say a tricky

6 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

recursion or iteration — then if you don’t understand what is going on as you
go around a loop or call a function recursively, it is unlikely that you will write
the code correctly. When your testing tells you the code is incorrect, you still
need to get it right.

To make your iteration or recursion correct, you need to set up an inductive
hypothesis, and it is helpful to reason, formally or informally, that the hypoth-
esis is consistent with the iteration or recursion. This process of understanding
the workings of a correct program is essentially the same as the process of prov-
ing theorems by induction. Thus, in addition to giving you models that are
useful for certain types of software, it has become traditional for a course on
automata theory to cover methodologies of formal proof. Perhaps more than
other core subjects of computer science, automata theory lends itself to natural
and interesting proofs, both of the deductive kind (a sequence of justified steps)
and the inductive kind (recursive proofs of a parameterized statement that use
the statement itself with “lower” values of the parameter).

1.2.1 Deductive Proofs

As mentioned above, a deductive proof consists of a sequence of statements
whose truth leads us from some initial statement, called the hypothesis or the
given statement(s), to a conclusion statement. Each step in the proof must
follow, by some accepted logical principle, from either the given facts, or some
of the previous statements in the deductive proof, or a combination of these.

The hypothesis may be true or false, typically depending on values of its
parameters. Often, the hypothesis consists of several independent statements
connected by a logical AND. In those cases, we talk of each of these statements
as a hypothesis, or as a given statement.

The theorem that is proved when we go from a hypothesis H to a conclusion
C is the statement “if H then C.” We say that C'is deduced from H. An example
theorem of the form “if H then C” will illustrate these points.

Theorem 1.3: If z > 4, then 27 > 22, O

It is not hard to convince ourselves informally that Theorem 1.3 is true,
although a formal proof requires induction and will be left for Example 1.17.
First, notice that the hypothesis H is “x > 4.” This hypothesis has a parameter,
x, and thus is neither true nor false. Rather, its truth depends on the value of
the parameter z; e.g., H is true for x = 6 and false for xz = 2.

Likewise, the conclusion C is “2% > x2.” This statement also uses parameter
x and is true for certain values of z and not others. For example, C is false for
x = 3, since 2® = 8, which is not as large as 32 = 9. On the other hand, C is
true for x = 4, since 2* = 4> = 16. For & = 5, the statement is also true, since
2% = 32 is at least as large as 5% = 25.

Perhaps you can see the intuitive argument that tells us the conclusion
2% > z2 will be true whenever z > 4. We already saw that it is true for z = 4.
As x grows larger than 4, the left side, 2* doubles each time x increases by

1.2. INTRODUCTION TO FORMAL PROOF 7

1. However, the right side, 22, grows by the ratio (mT“)Q If > 4, then

x + 1)/x cannot be greater than 1.25, and therefore (<L ? cannot be bigger
g z g8

than 1.5625. Since 1.5625 < 2, each time x increases above 4 the left side 2*
grows more than the right side 22. Thus, as long as we start from a value like
x = 4 where the inequality 2% > z? is already satisfied, we can increase x as
much as we like, and the inequality will still be satisfied.

We have now completed an informal but accurate proof of Theorem 1.3. We
shall return to the proof and make it more precise in Example 1.17, after we
introduce “inductive” proofs.

Theorem 1.3, like all interesting theorems, involves an infinite number of
related facts, in this case the statement “if 2 > 4 then 2% > 22” for all integers
z. In fact, we do not need to assume z is an integer, but the proof talked about
repeatedly increasing x by 1, starting at = 4, so we really addressed only the
situation where x is an integer.

Theorem 1.3 can be used to help deduce other theorems. In the next ex-
ample, we consider a complete deductive proof of a simple theorem that uses
Theorem 1.3.

Theorem 1.4: If x is the sum of the squares of four positive integers, then
2% > 2.

PROOF: The intuitive idea of the proof is that if the hypothesis is true for z,
that is, x is the sum of the squares of four positive integers, then 2 must be at
least 4. Therefore, the hypothesis of Theorem 1.3 holds, and since we believe
that theorem, we may state that its conclusion is also true for x. The reasoning
can be expressed as a sequence of steps. Each step is either the hypothesis of
the theorem to be proved, part of that hypothesis, or a statement that follows
from one or more previous statements.

By “follows” we mean that if the hypothesis of some theorem is a previous
statement, then the conclusion of that theorem is true, and can be written down
as a statement of our proof. This logical rule is often called modus ponens; i.e.,
if we know H is true, and we know “if H then C” is true, we may conclude
that C' is true. We also allow certain other logical steps to be used in creating
a statement that follows from one or more previous statements. For instance,
if A and B are two previous statements, then we can deduce and write down
the statement “A and B.”

Figure 1.3 shows the sequence of statements we need to prove Theorem 1.4.
While we shall not generally prove theorems in such a stylized form, it helps to
think of proofs as very explicit lists of statements, each with a precise justifica-
tion. In step (1), we have repeated one of the given statements of the theorem:
that x is the sum of the squares of four integers. It often helps in proofs if we
name quantities that are referred to but not named, and we have done so here,
giving the four integers the names a, b, ¢, and d.

In step (2), we put down the other part of the hypothesis of the theorem:
that the values being squared are each at least 1. Technically, this statement
represents four distinct statements, one for each of the four integers involved.

8 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

| | Statement | Justification |
l.|z=a>+b"+*+d° Given
2.la>1;b6>1;¢c>1;d>1 Given
3. | a®>>1;2>1;c2>1;d> > 1 | (2) and properties of arithmetic
4. |z >4 (1), (3), and properties of arithmetic
5. | 2% > 22 (4) and Theorem 1.3

Figure 1.3: A formal proof of Theorem 1.4

Then, in step (3) we observe that if a number is at least 1, then its square is
also at least 1. We use as a justification the fact that statement (2) holds, and
“properties of arithmetic.” That is, we assume the reader knows, or can prove
simple statements about how inequalities work, such as the statement “if y > 1,
then y2 > 1.7

Step (4) uses statements (1) and (3). The first statement tells us that z is
the sum of the four squares in question, and statement (3) tells us that each of
the squares is at least 1. Again using well-known properties of arithmetic, we
conclude that x is at least 1 +14+ 1+ 1, or 4.

At the final step (5), we use statement (4), which is the hypothesis of Theo-
rem 1.3. The theorem itself is the justification for writing down its conclusion,
since its hypothesis is a previous statement. Since the statement (5) that is
the conclusion of Theorem 1.3 is also the conclusion of Theorem 1.4, we have
now proved Theorem 1.4. That is, we have started with the hypothesis of that
theorem, and have managed to deduce its conclusion. O

1.2.2 Reduction to Definitions

In the previous two theorems, the hypotheses used terms that should have
been familiar: integers, addition, and multiplication, for instance. In many
other theorems, including many from automata theory, the terms used in the
statement may have implications that are less obvious. A useful way to proceed
in many proofs is:

¢ If you are not sure how to start a proof, convert all terms in the hypothesis
to their definitions.

Here is an example of a theorem that is simple to prove once we have ex-
pressed its statement in elementary terms. It uses the following two definitions:

1. A set S is finite if there exists an integer n such that S has exactly n
elements. We write ||S|| = n, where ||S|| is used to denote the number
of elements in a set S. If the set S is not finite, we say S is infinite.
Intuitively, an infinite set is a set that contains more than any integer
number of elements.

1.2. INTRODUCTION TO FORMAL PROOF 9

2. If S and T are both subsets of some set U, then T is the complement of S
(with respect to U) if SUT = U and S NT = (. That is, each element
of U is in exactly one of S and 7T'; put another way, 1" consists of exactly
those elements of U that are not in S.

Theorem 1.5: Let S be a finite subset of some infinite set U. Let T be the
complement of S with respect to U. Then 7' is infinite.

PROOF: Intuitively, this theorem says that if you have an infinite supply of
something (U), and you take a finite amount away (), then you still have an
infinite amount left. Let us begin by restating the facts of the theorem as in
Fig. 1.4.

| Original Statement | New Statement |
S is finite There is a integer n
such that ||S|| =n
U is infinite For no integer p
is [[U|| =p
T is the complement of S | SUT =U and SNT =

Figure 1.4: Restating the givens of Theorem 1.5

We are still stuck, so we need to use a common proof technique called “proof
by contradiction.” In this proof method, to be discussed further in Section 1.3.3,
we assume that the conclusion is false. We then use that assumption, together
with parts of the hypothesis, to prove the opposite of one of the given statements
of the hypothesis. We have then shown that it is impossible for all parts of the
hypothesis to be true and for the conclusion to be false at the same time.
The only possibility that remains is for the conclusion to be true whenever the
hypothesis is true. That is, the theorem is true.

In the case of Theorem 1.5, the contradiction of the conclusion is “T" is
finite.” Let us assume T is finite, along with the statement of the hypothesis
that says S is finite; i.e., ||.S|| = n for some integer n. Similarly, we can restate
the assumption that T is finite as ||T'|| = m for some integer m.

Now one of the given statements tells us that SUT = U, and SN T = {.
That is, the elements of U are exactly the elements of S and T. Thus, there
must be n + m elements of U. Since n + m is an integer, and we have shown
|U|| = n+m, it follows that U is finite. More precisely, we showed the number
of elements in U is some integer, which is the definition of “finite.” But the
statement that U is finite contradicts the given statement that U is infinite. We
have thus used the contradiction of our conclusion to prove the contradiction
of one of the given statements of the hypothesis, and by the principle of “proof
by contradiction” we may conclude the theorem is true. O

Proofs do not have to be so wordy. Having seen the ideas behind the proof,
let us reprove the theorem in a few lines.

10

CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Statements With Quantifiers

Many theorems involve statements that use the quantifiers “for all” and
“there exists,” or similar variations, such as “for every” instead of “for all.”
The order in which these quantifiers appear affects what the statement
means. It is often helpful to see statements with more than one quantifier
as a “game” between two players — for-all and there-exists — who take
turns specifying values for the parameters mentioned in the theorem. “For-
all” must consider all possible choices, so for-all’s choices are generally left
as variables. However, “there-exists” only has to pick one value, which
may depend on the values picked by the players previously. The order in
which the quantifiers appear in the statement determines who goes first.
If the last player to make a choice can always find some allowable value,
then the statement is true.

For example, consider an alternative definition of “infinite set”: set S
is infinite if and only if for all integers n, there exists a subset T of S with
exactly n members. Here, “for-all” precedes “there-exists,” so we must
consider an arbitrary integer n. Now, “there-exists” gets to pick a subset
T, and may use the knowledge of n to do so. For instance, if S were the
set of integers, “there-exists” could pick the subset T'= {1,2,...,n} and
thereby succeed regardless of n. That is a proof that the set of integers is
infinite.

The following statement looks like the definition of “infinite,” but is
incorrect because it reverses the order of the quantifiers: “there exists a
subset T of set S such that for all n, set T has exactly n members.” Now,
given a set S such as the integers, player “there-exists” can pick any set
T; say {1,2,5} is picked. For this choice, player “for-all” must show that
T has n members for every possible n. However, “for-all” cannot do so.
For instance, it is false for n = 4, or in fact for any n # 3.

PROOF: (of Theorem 1.5) We know that SUT = U and S and T are disjoint,
so ||S||+||IT|| = ||U]|- Since S is finite, ||.S|| = n for some integer n, and since U

is infinite, there is no integer p such that |U|| = p. So assume that T is finite;
that is, || T'|| = m for some integer m. Then ||U|| = ||S|| + ||T|| = n + m, which

contradicts the given statement that there is no integer p equal to ||U]]. O

1.2.3 Other Theorem Forms

The “if-then” form of theorem is most common in typical areas of mathematics.
However, we see other kinds of statements proved as theorems also. In this
section, we shall examine the most common forms of statement and what we
usually need to do to prove them.

1.2. INTRODUCTION TO FORMAL PROOF 11

Ways of Saying “If-Then”

First, there are a number of kinds of theorem statements that look different
from a simple “if H then C” form, but are in fact saying the same thing: if
hypothesis H is true for a given value of the parameter(s), then the conclusion
C is true for the same value. Here are some of the other ways in which “if H
then C” might appear.

1. H implies C.
2. Honlyif C.
3. C'if H.

4. Whenever H holds, C' follows.

We also see many variants of form (4), such as “if H holds, then C follows,” or
“whenever H holds, C holds.”

Example 1.6: The statement of Theorem 1.3 would appear in these four forms
as:

1. = > 4 implies 2% > 22.
2. z > 4 only if 2% > 22.
3.2 > ifx > 4.

4. Whenever z > 4, 2 > 22 follows.

In addition, in formal logic one often sees the operator — in place of “if-
then.” That is, the statement “if H then C” could appear as H — C' in some
mathematical literature; we shall not use it here.

If- And-Only-If Statements

Sometimes, we find a statement of the form “A if and only if B.” Other forms
of this statement are “A iff B,”! “A is equivalent to B,” or “A exactly when
B.” This statement is actually two if-then statements: “if A then B,” and “if
B then A.” We prove “A if and only if B” by proving these two statements:

1. The if part: “if B then A,” and

2. The only-if part: “if A then B,” which is often stated in the equivalent
form “A only if B.”

12 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

How Formal Do Proofs Have to Be?

The answer to this question is not easy. The bottom line regarding proofs
is that their purpose is to convince someone, whether it is a grader of your
classwork or yourself, about the correctness of a strategy you are using in
your code. If it is convincing, then it is enough; if it fails to convince the
“consumer” of the proof, then the proof has left out too much.

Part of the uncertainty regarding proofs comes from the different
knowledge that the consumer may have. Thus, in Theorem 1.4, we as-
sumed you knew all about arithmetic, and would believe a statement like
“if y > 1 then y? > 1.” If you were not familiar with arithmetic, we would
have to prove that statement by some steps in our deductive proof.

However, there are certain things that are required in proofs, and
omitting them surely makes the proof inadequate. For instance, any de-
ductive proof that uses statements which are not justified by the given or
previous statements, cannot be adequate. When doing a proof of an “if
and only if” statement, we must surely have one proof for the “if” part and
another proof for the “only-if” part. As an additional example, inductive
proofs (discussed in Section 1.4) require proofs of the basis and induction
parts.

The proofs can be presented in either order. In many theorems, one part is
decidedly easier than the other, and it is customary to present the easy direction
first and get it out of the way.

In formal logic, one may see the operator <> or = to denote an “if-and-only-
if” statement. That is, A = B and A <> B mean the same as “A if and only if
B.ﬂ

When proving an if-and-only-if statement, it is important to remember that
you must prove both the “if” and “only-if” parts. Sometimes, you will find it
helpful to break an if-and-only-if into a succession of several equivalences. That
is, to prove “A if and only if B,” you might first prove “A if and only if C',” and
then prove “C'if and only if B.” That method works, as long as you remember
that each if-and-only-if step must be proved in both directions. Proving any
one step in only one of the directions invalidates the entire proof.

The following is an example of a simple if-and-only-if proof. It uses the
notations:

1. |z], the floor of real number z, is the greatest integer equal to or less than
x.

LIff, short for “if and only if,” is a non-word that is used in some mathematical treatises
for succinctness.

1.3. ADDITIONAL FORMS OF PROOF 13

2. [z], the ceiling of real number z, is the least integer equal to or greater
than z.

Theorem 1.7: Let z be a real number. Then |z] = [z] if and only if z is an
integer.

PROOF: (Only-if part) In this part, we assume |z| = [x]| and try to prove x is
an integer. Using the definitions of the floor and ceiling, we notice that |z| < =z,
and [z] > z. However, we are given that || = [z]. Thus, we may substitute
the floor for the ceiling in the first inequality to conclude [z] < z. Since
both [z]| < z and [x]| > « hold, we may conclude by properties of arithmetic
inequalities that [x] = z. Since [z] is always an integer, x must also be an
integer in this case.

(If part) Now, we assume z is an integer and try to prove || = [x]. This part
is easy. By the definitions of floor and ceiling, when z is an integer, both |z]
and [z] are equal to z, and therefore equal to each other. O

1.2.4 Theorems That Appear Not to Be If-Then
Statements

Sometimes, we encounter a theorem that appears not to have a hypothesis. An
example is the well-known fact from trigonometry:

Theorem 1.8: sin?0 +cos26=1. O

Actually, this statement does have a hypothesis, and the hypothesis consists
of all the statements you need to know to interpret the statement. In particular,
the hidden hypothesis is that 6 is an angle, and therefore the functions sine
and cosine have their usual meaning for angles. From the definitions of these
terms, and the Pythagorean Theorem (in a right triangle, the square of the
hypotenuse equals the sum of the squares of the other two sides), you could
prove the theorem. In essence, the if-then form of the theorem is really: “if 6
is an angle, then sin® 6 + cos? 6 = 1.”

1.3 Additional Forms of Proof

In this section, we take up several additional topics concerning how to construct
proofs:

1. Proofs about sets.
2. Proofs by contradiction.

3. Proofs by counterexample.

14 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

1.3.1 Proving Equivalences About Sets

In automata theory, we are frequently asked to prove a theorem which says that
the sets constructed in two different ways are the same sets. Often, these sets
are sets of character strings, and the sets are called “languages,” but in this
section the nature of the sets is unimportant. If £ and F' are two expressions
representing sets, the statement £ = F' means that the two sets represented
are the same. More precisely, every element in the set represented by F is in
the set represented by F', and every element in the set represented by F'is in
the set represented by FE.

Example 1.9: The commutative law of union says that we can take the union
of two sets R and S in either order. That is, RU S = S U R. In this case, F is
the expression R U S and F' is the expression S U R. The commutative law of
union says that £ =F. 0O

We can write a set-equality £ = F' as an if-and-only-if statement: an element
z is in F if and only if x is in F. As a consequence, we see the outline of a
proof of any statement that asserts the equality of two sets F = F; it follows
the form of any if-and-only-if proof:

1. Proof that if z is in F, then 2 is in F'.
2. Prove that if x is in F, then z is in F.

As an example of this proof process, let us prove the distributive law of
union over intersection:

Theorem 1.10: RU(SNT)=(RUS)N(RUT).
PROOF: The two set-expressions involved are £ = RU (SN T) and

F=(RUS)N(RUT)

We shall prove the two parts of the theorem in turn. In the “if” part we assume
element x is in £ and show it is in F. This part, summarized in Fig. 1.5, uses
the definitions of union and intersection, with which we assume you are familiar.

Then, we must prove the “only-if” part of the theorem. Here, we assume x
is in F' and show it is in E. The steps are summarized in Fig. 1.6. Since we
have now proved both parts of the if-and-only-if statement, the distributive law
of union over intersection is proved. O

1.3.2 The Contrapositive

Every if-then statement has an equivalent form that in some circumstances is
easier to prove. The contrapositive of the statement “if H then C” is “if not C'
then not H.” A statement and its contrapositive are either both true or both
false, so we can prove either to prove the other.

To see why “if H then C” and “if not C then not H” are logically equivalent,
first observe that there are four cases to consider:

1.3. ADDITIONAL FORMS OF PROOF

| | Statement

| Justification

l. |zisin RU(SNT)

Given

2. |zisin Rorzisin SNT | (1) and definition of union

3. | zisin Ror x is in (2) and definition of intersection
both S and T

4. |zisin RUS (3) and definition of union

5. | zisin RUT (3) and definition of union

6. | zisin (RUS)N(RUT) | (4), (5), and definition

of intersection

Figure 1.5: Steps in the “if” part of Theorem 1.10

15

| | Statement | Justification
1. |zisin (RUS)N(RUT) | Given
2. | zisin RUS (1) and definition of intersection
3. |zisin RUT (1) and definition of intersection
4. | zisin R or z is in (2), (3), and reasoning

both S and T about unions

5. | zisin Ror x isin SNT | (4) and definition of intersection
6. | zisin RU(SNT) (5) and definition of union

Figure 1.6: Steps in the “only-if” part of Theorem 1.10

1. H and C both true.
2. H true and C false.
3. C true and H false.
4. H and C both false.

There is only one way to make an if-then statement false; the hypothesis must
be true and the conclusion false, as in case (2). For the other three cases,
including case (4) where the conclusion is false, the if-then statement itself is
true.

Now, consider for which cases the contrapositive “if not C' then not H” is
false. In order for this statement to be false, its hypothesis (which is “not C”)
must be true, and its conclusion (which is “not H”) must be false. But “not
C” is true exactly when C is false, and “not H” is false exactly when H is true.
These two conditions are again case (2), which shows that in each of the four
cases, the original statement and its contrapositive are either both true or both
false; i.e., they are logically equivalent.

Example 1.11: Recall Theorem 1.3, whose statement was: “if x > 4, then
2% > 2”7 The contrapositive of this statement is “if not 22 > z? then not

16 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Saying “If-And-Only-If” for Sets

As we mentioned, theorems that state equivalences of expressions about
sets are if-and-only-if statements. Thus, Theorem 1.10 could have been
stated: an element z is in RU (SN T) if and only if z is in

(RUS)N (RUT)

Another common expression of a set-equivalence is with the locution
“all-and-only.” For instance, Theorem 1.10 could as well have been stated
“the elements of R U (S N T) are all and only the elements of

(RUS)N(RUT)

The Converse

Do not confuse the terms “contrapositive” and “converse.” The converse
of an if-then statement is the “other direction”; that is, the converse of “if
H then C” is “if C' then H.” Unlike the contrapositive, which is logically
equivalent to the original, the converse is not equivalent to the original
statement. In fact, the two parts of an if-and-only-if proof are always
some statement and its converse.

x > 4.” In more colloquial terms, making use of the fact that “not a > b” is
the same as a < b, the contrapositive is “if 2* < 22 then z < 4.” O

When we are asked to prove an if-and-only-if theorem, the use of the con-
trapositive in one of the parts allows us several options. For instance, suppose
we want to prove the set equivalence £ = F. Instead of proving “if x is in F
then x is in F' and if x is in F' then z is in E,” we could also put one direction
in the contrapositive. One equivalent proof form is:

e If z isin F then x is in F, and if z is not in E then z is not in F.

We could also interchange E and F' in the statement above.

1.3.3 Proof by Contradiction

Another way to prove a statement of the form “if H then C” is to prove the
statement

1.3. ADDITIONAL FORMS OF PROOF 17

e “H and not C implies falsehood.”

That is, start by assuming both the hypothesis H and the negation of the
conclusion C. Complete the proof by showing that something known to be
false follows logically from H and not C. This form of proof is called proof by
contradiction.

Example 1.12: Recall Theorem 1.5, where we proved the if-then statement
with hypothesis H = “U is an infinite set, S is a finite subset of U, and T is
the complement of S with respect to U.” The conclusion C was “T is infinite.”
We proceeded to prove this theorem by contradiction. We assumed “not C”;
that is, we assumed T was finite.

Our proof was to derive a falsehood from H and not C'. We first showed
from the assumptions that S and 1" are both finite, that U also must be finite.
But since U is stated in the hypothesis H to be infinite, and a set cannot be
both finite and infinite, we have proved the logical statement “false.” In logical
terms, we have both a proposition p (U is finite) and its negation, not p (U
is infinite). We then use the fact that “p and not p” is logically equivalent to
“false.” O

To see why proofs by contradiction are logically correct, recall from Sec-
tion 1.3.2 that there are four combinations of truth values for H and C. Only
the second case, H true and C false, makes the statement “if H then C” false.
By showing that H and not C' leads to falsehood, we are showing that case 2
cannot occur. Thus, the only possible combinations of truth values for H and
C are the three combinations that make “if H then C” true.

1.3.4 Counterexamples

In real life, we are not told to prove a theorem. Rather, we are faced with some-
thing that seems true — a strategy for implementing a program for example —
and we need to decide whether or not the “theorem” is true. To resolve the
question, we may alternately try to prove the theorem, and if we cannot, try to
prove that its statement is false.

Theorems generally are statements about an infinite number of cases, per-
haps all values of its parameters. Indeed, strict mathematical convention will
only dignify a statement with the title “theorem” if it has an infinite number
of cases; statements that have no parameters, or that apply to only a finite
number of values of its parameter(s) are called observations. It is sufficient to
show that an alleged theorem is false in any one case in order to show it is not a
theorem. The situation is analogous to programs, since a program is generally
considered to have a bug if it fails to operate correctly for even one input on
which it was expected to work.

It often is easier to prove that a statement is not a theorem than to prove
it s a theorem. As we mentioned, if .S is any statement, then the statement
“S is not a theorem” is itself a statement without parameters, and thus can

18 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

be regarded as an observation rather than a theorem. The following are two
examples, first of an obvious nontheorem, and the second a statement that just
misses being a theorem and that requires some investigation before resolving
the question of whether it is a theorem or not.

Alleged Theorem 1.13: All primes are odd. (More formally, we might say:
if integer x is a prime, then z is odd.)

DISPROOF: The integer 2 is a prime, but 2 is even. 0O

Now, let us discuss a “theorem” involving modular arithmetic. There is an
essential definition that we must first establish. If @ and b are positive integers,
then a mod b is the remainder when a is divided by b, that is, the unique integer
r between 0 and b — 1 such that a = ¢b + r for some integer ¢q. For example,
8 mod 3 = 2, and 9 mod 3 = 0. Our first proposed theorem, which we shall
determine to be false, is:

Alleged Theorem 1.14: There is no pair of integers a and b such that

amod b=>bmod a

When asked to do things with pairs of objects, such as a and b here, it is
often possible to simplify the relationship between the two by taking advantage
of symmetry. In this case, we can focus on the case where a < b, since if b < a
we can swap a and b and get the same equation as in Alleged Theorem 1.14.
We must be careful, however, not to forget the third case, where a = b. This
case turns out to be fatal to our proof attempts.

Let us assume a < b. Then a mod b = a, since in the definition of @ mod b
we have ¢ = 0 and r = a. That is, when a < b we have a = 0 x b+ a. But
b mod a < a, since anything mod a is between 0 and a — 1. Thus, when a < b,
b mod a < a mod b, so a mod b = b mod a is impossible. Using the argument
of symmetry above, we also know that @ mod b # b mod a when b < a.

However, consider the third case: a = b. Since x mod z = 0 for any integer
x, we do have a mod b = b mod a if a = b. We thus have a disproof of the
alleged theorem:

DISPROOF: (of Alleged Theorem 1.14) Let a = b = 2. Then
amod b=bmoda=0

O

In the process of finding the counterexample, we have in fact discovered the
exact conditions under which the alleged theorem holds. Here is the correct
version of the theorem, and its proof.

Theorem 1.15: a mod b = b mod a if and only if a = b.

1.4. INDUCTIVE PROOFS 19

PROOF: (If part) Assume a = b. Then as we observed above, £ mod « = 0 for
any integer z. Thus, a mod b = b mod a = 0 whenever a = b.

(Only-if part) Now, assume ¢ mod b = b mod a. The best technique is a
proof by contradiction, so assume in addition the negation of the conclusion;
that is, assume a # b. Then since a = b is eliminated, we have only to consider
the cases a < b and b < a.

We already observed above that when a < b, we have ¢ mod b = a and
b mod a < a. Thus, these statements, in conjunction with the hypothesis
a mod b = b mod a lets us derive a contradiction.

By symmetry, if b < a then b mod a = b and a mod b < b. We again derive
a contradiction of the hypothesis, and conclude the only-if part is also true. We
have now proved both directions and conclude that the theorem is true. O

1.4 Inductive Proofs

There is a special form of proof, called “inductive,” that is essential when dealing
with recursively defined objects. Many of the most familiar inductive proofs
deal with integers, but in automata theory, we also need inductive proofs about
such recursively defined concepts as trees and expressions of various sorts, such
as the regular expressions that were mentioned briefly in Section 1.1.2. In this
section, we shall introduce the subject of inductive proofs first with “simple”
inductions on integers. Then, we show how to perform “structural” inductions
on any recursively defined concept.

1.4.1 Inductions on Integers

Suppose we are given a statement S(n), about an integer n, to prove. One
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer i. Usually, i = 0
or ¢ = 1, but there are examples where we want to start at some higher
1, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > ¢, where i is the basis integer,
and we show that “if S(n) then S(n +1).”

Intuitively, these two parts should convince us that S(n) is true for every
integer n that is equal to or greater than the basis integer .. We can argue as
follows. Suppose S(n) were false for one or more of those integers. Then there
would have to be a smallest value of n, say j, for which S(j) is false, and yet
j > i. Now j could not be i, because we prove in the basis part that S(i) is
true. Thus, j must be greater than i. We now know that j—1 >4, and S(j —1)
is true.

However, we proved in the inductive part that if n > 4, then S(n) implies
S(n +1). Suppose we let n = j — 1. Then we know from the inductive step
that S(j — 1) implies S(j). Since we also know S(j — 1), we can conclude S(j).

20 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

We have assumed the negation of what we wanted to prove; that is, we
assumed S(j) was false for some j > i. In each case, we derived a contradiction,
so we have a “proof by contradiction” that S(n) is true for all n > 1.

Unfortunately, there is a subtle logical flaw in the above reasoning. QOur
assumption that we can pick the least j > ¢ for which S(j) is false depends on
our believing the principle of induction in the first place. That is, the only way
to prove that we can find such a j is to prove it by a method that is essentially
an inductive proof. However, the “proof” discussed above makes good intuitive
sense, and matches our understanding of the real world. Thus, we generally
take as an integral part of our logical reasoning system:

e The Induction Principle: If we prove S(i) and we prove that for all n > i,
S(n) implies S(n + 1), then we may conclude S(n) for all n > i.

The following two examples illustrate the use of the induction principle to prove
theorems about integers.

Theorem 1.16: For all n > 0:

ZZ,Q _ n(n + 1)6(2n +1) (11)

i=1
PROOF: The proof is in two parts: the basis and the inductive step; we prove
each in turn.

BASIS: For the basis, we pick n = 0. It might seem surprising that the theorem
even makes sense for n = 0, since the left side of Equation (1.1) is Z?:l when
n = 0. However, there is a general principle that when the upper limit of a sum
(0 in this case) is less than the lower limit (1 here), the sum is over no terms
and therefore the sum is 0. That is, Z?Zl i? = 0.

The right side of Equation (1.1) is also 0, since 0 x (0+1) x (2x0+41)/6 = 0.

Thus, Equation (1.1) is true when n = 0.

INDUCTION: Now, assume n > 0. We must prove the inductive step, that
Equation (1.1) implies the same formula with n + 1 substituted for n. The
latter formula is

[n+1]
S [+ 1)([n + 1] +61)(2[n +1]+1) (1.2)

We may simplify Equations (1.1) and (1.2) by expanding the sums and products
on the right sides. These equations become:

7
> i =(2n +3n% +n)/6 (1.3)
=1
n+1
> i% = (20" + 9n” + 13n + 6)/6 (1.4)
=1

1.4. INDUCTIVE PROOFS 21

We need to prove (1.4) using (1.3), since in the induction principle, these are
statements S(n + 1) and S(n), respectively. The “trick” is to break the sum to
n + 1 on the left of (1.4) into a sum to n plus the (n + 1)st term. In that way,
we can replace the sum to n by the left side of (1.3) and show that (1.4) is true.
These steps are as follows:

(Z iz) +(n+1)% =20 +9n +13n+6)/6 (1.5)
i=1
(2n® +3n* +n)/6+ (n* +2n +1) = (2n® +9n? + 13n 4+ 6)/6 (1.6)

The final verification that (1.6) is true requires only simple polynomial algebra
on the left side to show it is identical to the right side. O

Example 1.17: In the next example, we prove Theorem 1.3 from Section 1.2.1.
Recall this theorem states that if x > 4, then 2% > 2?. We gave an informal
proof based on the idea that the ratio z?/2% shrinks as z grows above 4. We
can make the idea precise if we prove the statement 22 > 22 by induction on
x, starting with a basis of x = 4. Note that the statement is actually false for
r < 4.

BASIS: If £ = 4, then 2% and 22 are both 16. Thus, 2* > 42 holds.

INDUCTION: Suppose for some z > 4 that 22 > 2. With this statement as
the hypothesis, we need to prove the same statement, with x 4+ 1 in place of =,
that is, 2[*+11 > [z 4+ 1]2. These are the statements S(z) and S(z + 1) in the
induction principle; the fact that we are using x instead of n as the parameter
should not be of concern; x or n is just a local variable.

As in Theorem 1.16, we should rewrite S(z + 1) so it can make use of S(x).
In this case, we can write 21711 as 2 x 27 Since S(z) tells us that 2% > z2, we
can conclude that 2711 = 2 x 2% > 222,

But we need something different; we need to show that 22+ > (z + 1)2.
One way to prove this statement is to prove that 222 > (z + 1)? and then use
the transitivity of > to show 2°71 > 222 > (z + 1)2. In our proof that

2% > (z +1)? (1.7)
we may use the assumption that x > 4. Begin by simplifying (1.7):

z?>2x+1 (1.8)
Divide (1.8) by z, to get:
1
2> 24 = (1.9)
x

Since x > 4, we know 1/x < 1/4. Thus, the left side of (1.9) is at least
4, and the right side is at most 2.25. We have thus proved the truth of (1.9).

22 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Integers as Recursively Defined Concepts

We mentioned that inductive proofs are useful when the subject matter is
recursively defined. However, our first examples were inductions on inte-
gers, which we do not normally think of as “recursively defined.” However,
there is a natural, recursive definition of when a number is a nonnegative
integer, and this definition does indeed match the way inductions on inte-
gers proceed: from objects defined first, to those defined later.

BASIS: 0 is an integer.

INDUCTION: If n is an integer, then so is n + 1.

Therefore, Equations (1.8) and (1.7) are also true. Equation (1.7) in turn gives
us 222 > (x + 1) for > 4 and lets us prove statement S(x + 1), which we
recall was 221! > (x +1)2. O

1.4.2 More General Forms of Integer Inductions

Sometimes an inductive proof is made possible only by using a more general
scheme than the one proposed in Section 1.4.1, where we proved a statement S
for one basis value and then proved that “if S(n) then S(n+1).” Two important
generalizations of this scheme are:

1. We can use several basis cases. That is, we prove S(i),S(i + 1),...,5(4)
for some j > i.

2. In proving S(n + 1), we can use the truth of all the statements
S(),S@E+1),...,5(n)

rather than just using S(n). Moreover, if we have proved basis cases up
to S(j), then we can assume n > j, rather than just n > i.

The conclusion to be made from this basis and inductive step is that S(n) is
true for all n > 1.

Example 1.18: The following example will illustrate the potential of both
principles. The statement S(n) we would like to prove is that if n > 8, then n
can be written as a sum of 3’s and 5’s. Notice, incidentally, that 7 cannot be
written as a sum of 3’s and 5’s.

BASIS: The basis cases are S(8), S(9), and S(10). The proofs are 8 = 3 + 5,
9=3+3+3, and 10 = 5 + 5, respectively.

1.4. INDUCTIVE PROOFS 23

INDUCTION: Assume that n > 10 and that S(8),5(9),...,S(n) are true. We
must prove S(n + 1) from these given facts. Our strategy is to subtract 3 from
n + 1, observe that this number must be writable as a sum of 3’s and 5’s, and
add one more 3 to the sum to get a way to write n + 1.

More formally, observe that n — 2 > 8, so we may assume S(n — 2). That
is, n — 2 = 3a + 5b for some integers a and b. Then n 4+ 1 = 3 + 3a + 5b, so
n + 1 can be written as the sum of a + 1 3’s and b 5’s. That proves S(n + 1)
and concludes the inductive step. 0O

1.4.3 Structural Inductions

In automata theory, there are several recursively defined structures about which
we need to prove statements. The familiar notions of trees and expressions
are important examples. Like inductions, all recursive definitions have a basis
case, where one or more elementary structures are defined, and an inductive
step, where more complex structures are defined in terms of previously defined
structures.

Example 1.19: Here is the recursive definition of a tree:
BASIS: A single node is a tree, and that node is the root of the tree.

INDUCTION: If T}, 715, ..., T} are trees, then we can form a new tree as follows:
1. Begin with a new node N, which is the root of the tree.
2. Add copies of all the trees Ty, Ts, ..., Tk.

3. Add edges from node N to the roots of each of the trees Ty, T5, ..., Tk.

Figure 1.7 shows the inductive construction of a tree with root N from k smaller
trees. O

)

Ny

Figure 1.7: Inductive construction of a tree

Example 1.20: Here is another recursive definition. This time we define
expressions using the arithmetic operators 4+ and *, with both numbers and
variables allowed as operands.

24 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Intuition Behind Structural Induction

We can suggest informally why structural induction is a valid proof
method. Imagine the recursive definition establishing, one at a time, that
certain structures X1, Xo, ... meet the definition. The basis elements come
first, and the fact that X; is in the defined set of structures can only de-
pend on the membership in the defined set of structures that precede X;
on the list. Viewed this way, a structural induction is nothing but an in-
duction on integer n of the statement S(X,). This induction may be of
the generalized form discussed in Section 1.4.2, with multiple basis cases
and an inductive step that uses all previous instances of the statement.
However, we should remember, as explained in Section 1.4.1, that this
intuition is not a formal proof, and in fact we must assume the validity
of this induction principle as we did the validity of the original induction
principle of that section.

BASIS: Any number or letter (i.e., a variable) is an expression.
INDUCTION: If E and F' are expressions, then so are £+ F', Ex F, and (F).

For example, both 2 and = are expressions by the basis. The inductive step
tells us « + 2, (x + 2), and 2 x (z + 2) are all expressions. Notice how each of
these expressions depends on the previous ones being expressions. O

When we have a recursive definition, we can prove theorems about it using
the following proof form, which is called structural induction. Let S(X) be a
statement about the structures X that are defined by some particular recursive
definition.

1. As a basis, prove S(X) for the basis structure(s) X.

2. For the inductive step, take a structure X that the recursive defini-
tion says is formed from Y7,Ys,...,Y;. Assume that the statements
S(Y1),S(Y2),...,S(Yy) hold, and use these to prove S(X).

Our conclusion is that S(X) is true for all X. The next two theorems are
examples of facts that can be proved about trees and expressions.

Theorem 1.21: Every tree has one more node than it has edges.

PROOF: The formal statement S(T') we need to prove by structural induction
is: “if T is a tree, and T has n nodes and e edges, then n = e + 1.7

BASIS: The basis case is when 7' is a single node. Then n =1 and e = 0, so
the relationship n = e 4+ 1 holds.

1.4. INDUCTIVE PROOFS 25

INDUCTION: Let T be a tree built by the inductive step of the definition,
from root node N and k smaller trees 14,75, ..., Ty. We may assume that the
statements S(7;) hold for ¢ = 1,2,..., k. That is, let 7; have n; nodes and e¢;
edges; then n; = e; + 1.

The nodes of T are node N and all the nodes of the T;’s. There are thus
1+4+n1 +ne+---+ng nodes in I'. The edges of T" are the k edges we added
explicitly in the inductive definition step, plus the edges of the T;’s. Hence, T
has

k+e +ex+---+ep (1.10)

edges. If we substitute e; + 1 for n; in the count of the number of nodes of T
we find that T has

1+[61+1]+[62+1]+"'+[6k+1] (1.11)

nodes. Since there are k of the “+1” terms in (1.11), we can regroup it as:

]{J+1+€1+€2+"'+€k (112)

This expression is exactly 1 more than the expression of (1.10) that was given
for the number of edges of T'. Thus, T" has one more node than it has edges.
O

Theorem 1.22: Every expression has an equal number of left and right paren-
theses.

PROOF: Formally, we prove the statement S(G) about any expression G that
is defined by the recursion of Example 1.20: the numbers of left and right
parentheses in G are the same.

BASIS: If G is defined by the basis, then G is a number or variable. These
expressions have 0 left parentheses and 0 right parentheses, so the numbers are
equal.

INDUCTION: There are three rules whereby expression G may have been con-
structed according to the inductive step in the definition:

1. G=FE+F.
2. G=FEx«F.
3. G=(E).

We may assume that S(F) and S(F') are true; that is, F has the same number
of left and right parentheses, say n of each, and F' likewise has the same number
of left and right parentheses, say m of each. Then we can compute the numbers
of left and right parentheses in G for each of the three cases, as follows:

26 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

1. f G = E + F, then G has n + m left parentheses and n + m right
parentheses; n of each come from F and m of each come from F.

2. If G = E % F, the count of parentheses for G is again n + m of each, for
the same reason as in case (1).

3. If G = (E), then there are n+1 left parentheses in G — one left parenthesis
is explicitly shown, and the other n are present in F. Likewise, there are
n + 1 right parentheses in G; one is explicit and the other n are in E.

In each of the three cases, we see that the numbers of left and right parentheses
in G are the same. This observation completes the inductive step and completes
the proof. O

1.4.4 Mutual Inductions

Sometimes, we cannot prove a single statement by induction, but rather need
to prove a group of statements Si(n),Sa(n),...,Sk(n) together by induction
on n. Automata theory provides many such situations. In Example 1.23 we
sample the common situation where we need to explain what an automaton
does by proving a group of statements, one for each state. These statements
tell under what sequences of inputs the automaton gets into each of the states.

Strictly speaking, proving a group of statements is no different from proving
the congunction (logical AND) of all the statements. For instance, the group
of statements S1(n), Sa(n), ..., Sk(n) could be replaced by the single statement
S1(n) AND Sa(n) AND - - - AND Si(n). However, when there are really several inde-
pendent statements to prove, it is generally less confusing to keep the statements
separate and to prove them all in their own parts of the basis and inductive
steps. We call this sort of proof mutual induction. An example will illustrate
the necessary steps for a mutual recursion.

Example 1.23: Let us revisit the on/off switch, which we represented as an
automaton in Example 1.1. The automaton itself is reproduced as Fig. 1.8.
Since pushing the button switches the state between on and off, and the switch
starts out in the off state, we expect that the following statements will together
explain the operation of the switch:

S1(n): The automaton is in state off after n pushes if and only if n is even.

Sa(n): The automaton is in state on after n pushes if and only if n is odd.

We might suppose that S; implies S> and vice-versa, since we know that
a number n cannot be both even and odd. However, what is not always true
about an automaton is that it is in one and only one state. It happens that
the automaton of Fig. 1.8 is always in exactly one state, but that fact must be
proved as part of the mutual induction.

1.4. INDUCTIVE PROOFS 27

Push

Start @ @

Push

Figure 1.8: Repeat of the automaton of Fig. 1.1

We give the basis and inductive parts of the proofs of statements S;(n) and
Sa(n) below. The proofs depend on several facts about odd and even integers:
if we add or subtract 1 from an even integer, we get an odd integer, and if we
add or subtract 1 from an odd integer we get an even integer.

BASIS: For the basis, we choose n = 0. Since there are two statements, each of
which must be proved in both directions (because S; and Sy are each “if-and-
only-if” statements), there are actually four cases to the basis, and four cases
to the induction as well.

1. [S1; If] Since 0 is in fact even, we must show that after 0 pushes, the
automaton of Fig. 1.8 is in state off. Since that is the start state, the
automaton is indeed in state off after 0 pushes.

2. [S1; Only-if] The automaton is in state off after O pushes, so we must
show that 0 is even. But 0 is even by definition of “even,” so there is
nothing more to prove.

3. [S2; If] The hypothesis of the “if” part of Sy is that 0 is odd. Since this
hypothesis H is false, any statement of the form “if H then C” is true, as
we discussed in Section 1.3.2. Thus, this part of the basis also holds.

4. [So; Only-if] The hypothesis, that the automaton is in state on after 0
pushes, is also false, since the only way to get to state on is by following
an arc labeled Push, which requires that the button be pushed at least
once. Since the hypothesis is false, we can again conclude that the if-then
statement is true.

INDUCTION: Now, we assume that S1(n) and Sy(n) are true, and try to prove
Si1(n+1) and S2(n + 1). Again, the proof separates into four parts.

1. [Si(n + 1); If] The hypothesis for this part is that n + 1 is even. Thus,
n is odd. The “if” part of statement S,(n) says that after n pushes, the
automaton is in state on. The arc from on to off labeled Push tells us
that the (n 4 1)st push will cause the automaton to enter state off. That
completes the proof of the “if” part of Sy(n + 1).

28

CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

. [S1(n +1); Only-if] The hypothesis is that the automaton is in state off

after n + 1 pushes. Inspecting the automaton of Fig. 1.8 tells us that the
only way to get to state off after one or more moves is to be in state on and
receive an input Push. Thus, if we are in state off after n + 1 pushes, we
must have been in state on after n pushes. Then, we may use the “only-if”
part of statement Sa(n) to conclude that n is odd. Consequently, n + 1 is
even, which is the desired conclusion for the only-if portion of Si(n + 1).

. [S2(n+1); If] This part is essentially the same as part (1), with the roles of

statements S7 and Ss exchanged, and with the roles of “odd” and “even”
exchanged. The reader should be able to construct this part of the proof
easily.

. [S2(n 4+ 1); Only-if] This part is essentially the same as part (2), with the

roles of statements S7 and S, exchanged, and with the roles of “odd” and
“even” exchanged.

We can abstract from Example 1.23 the pattern for all mutual inductions:

e Each of the statements must be proved separately in the basis and in the

inductive step.

o If the statements are “if-and-only-if,” then both directions of each state-

ment must be proved, both in the basis and in the induction.

1.5 The Central Concepts of Automata Theory

In this section we shall introduce the most important definitions of terms that
pervade the theory of automata. These concepts include the “alphabet” (a set
of symbols), “strings” (a list of symbols from an alphabet), and “language” (a
set of strings from the same alphabet).

1.5.1 Alphabets

An alphabet is a finite, nonempty set of symbols. Conventionally, we use the
symbol ¥ for an alphabet. Common alphabets include:

1. ¥ ={0, 1}, the binary alphabet.
2. ¥ ={a,b,...,z}, the set of all lower-case letters.

3. The set of all ASCII characters, or the set of all printable ASCII charac-

ters.

