Welcome to

Theory of Computation

CS 420 / CS 620

UMass Boston Computer Science
Instructors: Stephen Chang and Holly DeBlois

Today's Theme: Fall 2025

What's this course about?

Welcome to

Theory of Computation\

CS 420 / CS 620

UMass Boston Computer Science| What's this?

Instructors: Stephen Chang and Holly DeBlois

Fall 2025

iwtertude: LECLUTE LOGISTICS

e [expect: lecture to be Interactive
« Participation is a part of your grade
 Also, it’'s the best way to learn!

* [may: call on students randomly

* It's ok to be wrong in class! — will not affect your grade
 Also, it’'s the best way to learn!

e Please: tell me your name before speaking
» Sorry In advance If | get It wrong
 Also, it’'s the best way for me to learn!

Welcome to

Theory of Computation

CS 420 / CS 620 N\

UMass Boston Computer Science

How would you
define this?

Instructors: Stephen Chang and Holly DeBlois

Fall 2025

Computation Is ... (via examples)

1+1=77
=2

11+11=7?
=22

... some basic definitions and assumptions (“axioms”),
e.g., define “Numbers” to be: 0, 1, 2, 3, ...

... and rules that use the definitions and axioms (“algorithm”),
e.g., grade school arithmetic

SJSISISISISISISISIO) a5 SISISISISICISISICIS) = Wi Computation rules can be executed by
- 19999999998 hand, or by machine / automaton

1+1=77
=10

(binary)

There are many possible definitions
(i.e., models) of computation

Computation Is ... Programs!

Every programming language
is a model of computation

def bigger(x):
if x > 0:
return X

else:
return X

= 11

t If they are different:

how can we know?

-1

Or S
dMme?
??? =5t

If they are the same: e

You already use
models of
computation!
Every time you
reason about cod

is there a common _
model for all?

el

This semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

Models of Computation

[Ffirite Tape

1|o|n|o|1|1|1

0| ERE

Read Fite Head

Control Unit

| State:
. r

' simplify

Contral Processing Unit

Input Dt put
paptt ArithmaticiLagie Unit o -

simplify : / RISC

This semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

2. Compare and contrast models of computation
« which “programs” are included by a model
« which “programs” are excluded by a model
« overlap between models?

Models of Computation

Q;: Are there
computational
models ...

“more powerful”
than Turing
Machines?

Q;: Are there computational models ...
other than Turing Machines?

Turing Machines |

Q,: Are there computational models ...
“weaker” than Turing Machines?

Q,: What does “weaker” or
“more powerful” even mean?!

A: Yes, yes,
yes, and ...
stay tuned!

Models of Computation Hierarchy [.andgettonere..

Turing Machines

... and also look at
what's out here???

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

y

We’'ll start here ...

But remenber ... COMpuUtation = Programs!

A “Programming language” _ Turing Machines

A “Programming language” ﬁ Linear bounded Automata

More powerful
More complex

. . Less restricted
A “Programming language ~ Push-down Automata

A “Programming language” ~ -
| |

tethfed ANALOGY for this course:
- aset of machines / computational model (a rectangle) ~ @ Programming Language!

- a single machine (one thingin a rectangle) ~ @ Program!

What's this?

Welcome to /
Theory of Computation

CS 420 / CS 620

UMass Boston Computer Science
Instructors: Stephen Chang and Holly DeBlois

Fall 2025

What's this?

N Welcome to

Theory of Computation

CS 420 / CS 620

UMass Boston Computer Science
Instructors: Stephen Chang and Holly DeBlois

Fall 2025

“Theory” = math
(This is a math course!)

(But programming is math too!)

Programming Is (What) Math?

Math(ematical) logic!

def bigger(x):
if x > 0:

return x + 1
else:

return x — 1

print(bigger(10))
227

= 11

How did you figure out the answer?

(But programming is math too!)

Programming = Mathematical logic!

* “logic is the foundation of all computer programming”

 https://www.technokids.com/blog/programming/its-easy-to-improve-logical-thinking-with-programming/

* “logic is the fundamental key to becoming a good developer”

 https://www.geeksforgeeks.org/i-cant-use-logic-in-programming-what-should-i-do/

* “Analytical skill and logical reasoning are prerequisites of programming
because coding is effectively logical problem solving at its core”

 https://levelup.gitconnected.com/the-secret-weapon-of-great-software-engineers-22d57f427937

(Studying logic, i.e., this class, will make you a better prosrammert!)

Programming = Mathematical logic!

Programming Concepts
 Functions

 Variables
o [f-then
« Recursion
* Strings

 Sets (and other
data structures)

Math(ematical Logic) Concepts
 Functions

 Variables

» If-then (implication)
« Recursion

* Strings

» Sets (and other
groupings of data)

(Studying logic, i.e., this class, will make you a better prosrammert!)

This semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

2. Compare and contrast models of computation
« which “programs” are included by a model
« which “programs” are excluded by a model
« overlap between models?

3. Prove things about the models

Reasoning About Code IS Math Proof

A

def no_divO(x):
if (x >0) | (x <0) | (x ==
return x + 1
else:
return 1 / 0

print(no_dive(10)) ???

= 11

0):

Can this function ever throw ZeroDivisionError? No!

How did you figure out the answer?

You used the Python model of computation
to predict the program’s behavior

You did a proof!

A (Mathematical) Theory Is ...

Mathematical theory

From Wikipedia, the free encyclopedia

A mathematical theory is ¢ mathematical model >f a branch of mathematics that is
based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based
on known axioms and definitions |, and so in this sense can refer to an area of
mathematical research within the established framework.[1[2]

Explanatory depth is one of the most significant theoretical virtues in mathematics. For

example, set theory has the ability tolsystematize and explainlnumber theory and

geometry/analysis. Despite the widely logical necessity (and self-evidence) of arithmetic
truths such as 1<3, 2+2=4, 6-1=5, and so on, a theory that just postulates an infinite
blizzard of such truths would be inadequate. Rather an adequate theory is one in which
such truths are derived from explanatorily prior axioms, such as the Peano Axioms or set
theoretic axioms, which lie at the foundation of ZFC axiomatic set theory.

The singular accomplishment of axiomatic set theory is its ability to give a foundation for
the derivation of the entirety of classical mathematics from a handful of axioms. The
reason set theory is so prized is because of its explanatory depth. So a mathematical
theory which just postulates an infinity of arithmetic truths without explanatory depth would
not be a serious competitor to Peano arithmetic or Zermelo-Fraenkel set theory.[3][4]

... a mathematical model,
l.e., axioms and definitions, of
some domain, e.g. computers ...

... that explains (predicts)
some real-world phenomena ...

... and can derive (prove)
additional results (theorems) ...

How Mathematics (Proofs) Work

More Theorems

— More Axioms
Mathematician

(or student) More Definitions

\ < Theorem
Addmg next lc—:zvgl Is hard ... Theorem
Preciseness is important :
(just like in programming) R —
Proofs = Figuring out how to .
(precisely) stack the pieces together Definitions

The “Modus Ponens” Inference Rule

(Precisely Fitting Blocks Together)

Premises (if we can show these statements are true)

 |f Pthen Q
* PIS TRUE
_IDON'T KNOW WHAT MODUS
. .. wwmwe= PONENS IS
Conclusion (then we can say that this is also true) ¥

* Q) must also be TRUE

Kinds of Mathematical Proof

Deductive Proof
e Start with: known facts and statements

e Use: logical inference rules (like modus ponens)
to prove new facts and statements

You already do “Proof” when Programming

def no_divO(x):

if (x >0) | (x <0) | (x ==0):
return x + 1
else:

return 1 / 0O

print(no_dive(10)) 7???

= 11

Can this function ever throw ZeroDivisionError? No!

How did you figure out the answer? You used the Python model of computation
to predict the program’s behavior

(Let's write it out formally) You did a proof!

if

Deductive Proof Example

def no_divO(x): “testexpr”

(x >0) | (x <0) | (x

0):

return x + 1

else:

Prove: no_div0e never throws ZeroDivisionError

Proof:

Prior steps are already-proved, can be used to prove later steps!

Statements Justifications

1. | If running “test expr” is True,
then “first branch” runs

2. If running “test expr” is False, 2.
then “second branch” runs

3. running “test expr”’ is (always) True 3.
“first branch” (always) runs 4.,

/. no_div0 never throws ZeroDivisionError

return 1 / 0

1. Rules of Python
Rules of Python

Definition of “numbers”

“first branch”

“second branch”

Statements / Justifications Table

Modus Ponens

If we can prove these:
-ﬁEPthmwQ\

- P

Then we've proved:

'Q<:|

By steps 1, 3, and modus ponens

def no_divo(x):

Deductive Proof Example = oot eeoix=o:

Prove: no_div0e never throws ZeroDivisionError

Proof:
Statements
1. If running “test expr” is True,
then “first branch” runs
2. If running “test expr” is False,
then “second branch” runs
3. running “test expr”’ is (always) True
4. “first branch” (always) runs
5. “second branch” never runs
6. no_divOneverrunsl / ©
®m) 7. no_dive neverthrows ZeroDivisionError

return x + 1
else:
return 1 / 0| “second branch”

Justifications

1. Rules of Python

2. Rules of Python

3. Definition of “numbers”

4. By steps 1, 3, and modus ponens
5. By step 4, and Rules of Python???
6. Bystep5

7. By step 6 and Rules of Python???

What else can we prove about programs?

RANSOMWARE ATTACK

function c (n)
1f the number n 1s a prime
/7 1f the number is not :

Iyl

YOUR FILES HAVE BEEN ENCRYPTED

: & pPrime

Proof = prediction about program result
... without running the program

Can we make predictions about computation?

It's tricky: Trying to predict
computation requires computation!

Can we make predictions about computation?

 The Halting Lemma says:

» And Rice’s Theorem says:

* “all non-trivial, semantic properties of programs are undecidable”

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Decision_problem

Knowing What Computers Can't Do 1s Still Useful!

In Cryptography:
 Perfect secrecy Is impossible in practice

« But with slightly imperfect secrecy (ie, a computationally bounded adversary)
we get:

Can we make predictions about computation?

Actually:
* it depends on the computation model!

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Decision_problem

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability. Bill Gates, April 18, 2002. Keynote address at WinHec
b, -

2002

z, Or

end() houe){

LI i vy

ur computer. If you do
itiom in all open applice

ocs

Predicting things about programs ... is the Holy grail of CS!

Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification tool, included in the Windows Driver Kit (WDK). The SDV
Research Platform (SDVRP) is an extension to SDV that allows you to adapt SDV to:

e Support additional frameworks (or APIs) and write custom SLIC rules for this framework.

e Experiment with the model checking step.

Proofs About Computational Models ... in this class

Turing Machines

Linear bounded Automata

Push-down Automata

In this class, we will prove things about
simple computational models (not Python ...)

More powerful
More complex
Less restricted

How This Course Works

Semester End

Semester Start

This
L Cqurse |

—

Prerequisite <
(CS 220)
(see hwo)

More Definitions, Axioms,
& Theorems

Theorems

Definitions & Axioms

Gralph
Theory

Set Theory

]

Boolean
Logic

L : | L =
| Mathematical
Logic

(What you will learn
this semester)

A Word of Advice

<—— To prove a (new) theorem ...
[mportant: oo o

. ... need to know all axioms,

Do. hot .fall behind & definitions, and (previous)
In this course 3 theorems below it

HW 1, Problem 1

Another Word of Advice

Prove that ABC = XY Z

©
T How can | help you today?
-“"‘\" | @ vececcer Prove that ABC
¢ i A Not-From-Fall
“Blocks” from outside the Theorem

Remember:
Preciseness in proofs (just like in
programming) is critical
(Proofs must connect facts from
this course exactly)

... can be used to prove (new)
theorems in this course

Only axioms, definitions, and
theorems from this course ...

HW problems are graded on precise steps
in the proof, not on the final theorem itself!

Textbooks

« Sipser. Intro to Theory of Computation, 3" ed.

* Hopcroft, Motwani, Ullman. Intro to Automata Theory, Languages,
and Computation, 3™ ed.

- Slides (posted) and lecture will try to be self-contained,
- BUT, students who read the book earn higher grades

All course info available on (joint) web sites:
- ¢s.umb.edu/~stchang/cs620/f25

- ¢s.umb.edu/~stchang/cs420/f25

- ¢s.umb.edu/~hdeblois/cs420/f25/

How to Do Well in this Course

« Learn the “ building blocks”
* |.e., axioms, definitions, and theorems

* To solve a problem (prove a new theorem) ...
... think about how to (precisely) combine existing “blocks”

« HW problems graded on steps to the answer (not final theorem)

« Don't Fall Behind!
e Start HW Early (HW 0 due Monday 9/8 12pm EST noon)

« Participate and Engage
* Lecture
« Office Hours
- Message Boards (piazza)

Grading

« HW: 80% * A range: 90-100
* Weekly: In / Out Monday » B range: 80-90

« Approx. 12 assignments . .
e Lowest grade dropped C range: 70-80

» Participation: 20% * D range: 60-70
e Lecture participation, in-class *F: <60
work, office hours, piazza
* No exams

All course info available on (joint) web sites:
- ¢s.umb.edu/~stchang/cs620/f25

- ¢s.umb.edu/~stchang/cs420/f25

- ¢s.umb.edu/~hdeblois/cs420/f25/

Late HW

* Is bad ... try not to do It please

« Grades get delayed
e Can't discuss solutions
* You fall behind!

 Late Policy: 3 late days to use during the semester

HW Collaboration Policy

Allowed Not Allowed
 Discussing HW with classmates « Submitting someone else’s answer
(but must cite) » Submitting someone else’s answer with:
« Using other resources to learn, - variables changed,
e.g, youtube, other textbooks, ... » thesaurus words,
° ertlng Up answers * Or sentences rearranged
on your own, from scratch, Using sites like Chegg, CourseHero,
In your own words Bartleby, Study, ChatGPT, etc.

« Using theorems or definitions not from
this course

Honesty Policy

* 15t offense: zero on problem
« 2d offense: zero on hw, reported to school
« 314 offense+: F for course

Regret policy

* If you self-report an honesty violation, you’ll only
recelve a zero on the problem and we move on.

All Up to Date Course Info

Survey, Schedule, Office Hours, HWs, ...

See course website(s):

- ¢Ss.umb.edu/~stchang/cs620/f25
- ¢Ss.umb.edu/~stchang/cs420/1t25
- c¢s.umb.edu/~hdeblois/cs420/f25/

https://www.cs.umb.edu/~stchang/cs420/f20/index.html

hwO (pre-req quiz)
(see gradescope)

