Using and Proving Logical Statements

CS 420 / CS 620
UMass Boston Computer Science
Instructors: Stephen Chang and Holly DeBlois
Monday, September 8, 2025

Sentence Type Symbolic Logic
Simple p
Negation ~p
Conjunction pAg
Disjunction pvgq
Conditional P—9q
lecture02 Biconditional pe>q

%/{/{0«/{0@%@/{5&’

* HW * Lectures
« Weekly; in/out Mon noon « Slide sketches posted
« HW 0 in, HW 1 out « Will not simulate / replace lecture!
* Closely follow listed textbook
« ~3-4 questions, Paper-and-pencil chapters

proofs (no programming) Office Hours

« On web site

« Let me know in advance if possible,

but drop-ins also fine
 Final answers written up and e TAs TBD

submitted individually

 Discussing with classmates ok

In-class questions (in GradeScope) PREVIEW

* |f we Rnow statement AAB Is TRUE
... what do we know about A and B?

e |f we want to prove AAB Is TRUE
... what do we need to prove about A and B?

e |f we Rnow statement A—B Is TRUE
... what do we know about A and B?

* |f we want to prove statement A—B IS TRUE
... what are valid ways to do so?

* |f we want to prove statement A—B Is TRUE
... what i1s the most common way to do so?

Last [ine g,
Thi il Computation Model
IS Sem eSte r' We Wi (system of definitions and rules)
- o
. formal, ;Lec'\/se\i'defmed . .
1. Define and study models of computation AOEEImIrE LR NEUEES

- models will be as simple as possible (to make them easier to study)

#/(4/0}%,‘
A Computation (in a model)

2. Compare and contrast models of computation o
« which “programs” are included | excluded by a model A Program

« Equality or overlap between models?

3. Prove things about the models

Last [rne

How Mathematics (Proofs) Work

More Theorems

— More Axioms
Mathematician

(or student) More Definitions

\ < Theorem
Addmg next lc—:zvgl Is hard ... Theorem
Preciseness is important :
(just like in programming) R —
Proofs = Figuring out how to .
(precisely) stack the pieces together Definitions

The “Modus Ponens” Inference Rule

(Precisely Fitting Blocks Together)

Premises (if we can show these statements are true)

 |f Pthen Q
* PIS TRUE
_IDON'T KNOW WHAT MODUS
. .. wwmwe= PONENS IS
Conclusion (then we can say that this is also true) ¥

* Q) must also be TRUE

How This Course Works

Semester End

Semester Start

This
L Cqurse |

—

Prerequisite

(CS 220 Discrete <

Math, Logic, Set
Theory, etc)
(see hwo)

More Definitions, Axioms,
& Theorems

Theorems

Definitions & Axioms

Graiph
Theory

Set Theory

]

Boolean
Logic

| Mathematical
Logic

(What you will learn
this semester)

A Word of Advice

<—— To prove a (new) theorem ...
[mportant: oo o

. ... need to know all axioms,

Do. hot .fall behind & definitions, and (previous)
In this course 3 theorems below it

HW 1, Problem 1

Another Word of Advice

Prove that ABC = XY Z

©
T How can | help you today?
-“"‘\" | @ vececcer Prove that ABC
¢ i A Not-From-Fall
“Blocks” from outside the Theorem

Remember:
Preciseness in proofs
(just like in programming) is critical
(Proofs must connect
facts from this course exactly)

... can be used to prove (new)
theorems in this course

Only axioms, definitions, and
theorems from this course ...

HW problems are graded on precise steps
in the proof, not on the final theorem itself!

Grading

« HW: 80% * A range: 90-100
* Weekly: In / Out Monday » B range: 80-90

« Approx. 12 assignments . .
e Lowest grade dropped C range: 70-80

» Participation: 20% * D range: 60-70
e Lecture participation, in-class *F: <60
work, office hours, piazza
* No exams

All course info available on (joint) web sites:
- ¢s.umb.edu/~stchang/cs620/f25

- ¢s.umb.edu/~stchang/cs420/f25

- ¢s.umb.edu/~hdeblois/cs420/f25/

Textbooks

« Sipser. Intro to Theory of Computation, 3" ed.

* Hopcroft, Motwani, Ullman. Intro to Automata Theory, Languages,
and Computation, 3™ ed.

- Slides (posted) and lecture will try to be self-contained,
- BUT, students who read the book earn higher grades

All course info available on (joint) web sites:
- ¢s.umb.edu/~stchang/cs620/f25

- ¢s.umb.edu/~stchang/cs420/f25

- ¢s.umb.edu/~hdeblois/cs420/f25/

Late HW

* |s bad ... try not to do It please

« Grades get delayed
e Can't discuss solutions
* You fall behind!

 Late Policy: 3 late days to use during the semester

HW Collaboration Policy

Allowed Not Allowed
 Discussing HW with classmates « Submitting someone else’s answer
(but must cite) » Submitting someone else’s answer with:
« Using other resources to learn, - variables changed,
e.g, youtube, other textbooks, ... » thesaurus words,
° ertlng Up answers * Or sentences rearranged
on your own, from scratch, Using sites like Chegg, CourseHero,
In your own words Bartleby, Study, ChatGPT, etc.

« Using theorems or definitions not from
this course

Honesty Policy

* 15t offense: zero on problem
« 2d offense: zero on hw, reported to school
« 314 offense+: F for course

Regret policy

* If you self-report an honesty violation, you’ll only
recelve a zero on the problem and we move on.

All Up to Date Course Info

Survey, Schedule, Office Hours, HWs, ...

See course website(s):

- ¢Ss.umb.edu/~stchang/cs620/f25
- ¢Ss.umb.edu/~stchang/cs420/1t25
- c¢s.umb.edu/~hdeblois/cs420/f25/

https://www.cs.umb.edu/~stchang/cs420/f20/index.html

2 /‘60'/'06(&%%

How Mathematics (Proofs) Work

Tothy:
- “Facts” can have many different “shapes”!
- How can we PROVE new facts? (we don’t know it's TRUE!)
1 More Axioms ~
More Definitions
Theorem
>_ ¢ 144
Theorem facts
Axioms
Proofs = Figuring out how to "
(precisely) stack the pieces together Definitions ~

How This Course Works

Prerequisite
(see hwo)

CS 420 /
CS 620
theorems |

Graiph
Theory

Set Theory
T -
Boolean
Logic

| Mathematical ’«
- Loglc

How to combine known “facts”
to discover new “facts”

Mathematical Logic Operators

« Conjunction (AND, A\)

- Disjunction (OR, V)

/s Semester:

Must understand difference

. Negation (NOT, -, ~) between Using VS Proving
a mathematical statement!

e Implication (IF-THEN, =, —)

Mathematical Statements: AND

Using:
 |f we
what do we know about A4 and B Individually?

A

B

know A A B is TRUE |.

IS TRUE, and
IS TRUE

A B ANMNB

True | |True | | True <:| We know

True False False
False | True @False

False | False False

Mathematical Statements: AND

Using:

e |f we know A A Bis TRUE ...

what do we know about A and B individually?
A 1s TRUE, and
* B IS TRUE

Proving:

B Ke

orove A A B Is TRUE:

Prove

Prove

A

B

IS TRUE, and
IS TRUE

A

B AAB

True

True | True <:| We want

True False False

False True @False

False False False

Mathematical Statements: IF-THEN

Using:
* |f welknow P— Q1S TRUE

what do we know about P and Q individually?

 Either|P 1S FALSE] Or romise unbroken
e If (we prove) P is TRUE, then Q is TRUE

(modus ponens)

Examples?

An IF-THEN is a “promise”

(promise kept)

p
Proving: True
True
False
False

q P—4q
True | | Truel| < :: . We know
False False
True | True or we know
False | True

or we know

Using an IF-THEN statement:
The “Modus Ponens” Inference Rule

Premises (if these statements are true)

o|If Pthen Q
. ¢ e know
* P 1S TRUE

% q pP—g
Conclusion (then this is also true) Troe | /[Troel [Troe <: We know

*|Q must also be TRUE True False False

False True || True

False False |True

Mathematical Logic Operators: IF-THEN

Using:
* If we know P - @Q Is TRUE, -
what do we know about P and Q individually?
e Either Pis FALSE, or

- |f we prove P is TRUE, then Q is TRUE (modus ponens)

, p g PpP—gq
Proving: . True | True True - Want
* To prove P— QIs TRUE:

e Either Prove P Is FALSE (usu. hard or impossible), Or

» Assume (not prove!) P is TRUE, False = True | True Want?
then prove Q i1s TRUE

True False | False

False False True Want?

HMU Ch 1.2.1

bumple: Proving an IF-THEN Statement

Prove the following:

Proving IF-THEN / Using IF-THEN

'l\l F:If 2 > 4, then 2% > 2°< Assume this (AND stmt) is true
A | B AnB|\[— B

Using AND

True @ True True

AND:z is the sum of the squares of four positive integers) ¢ |pogq

True | True True‘ -

True False False

oT|—| EN: 2% > 332 Prove this is true

Proving:
To prove P— Qis TRUE:

False True | True

: , False False True
Assume (not prove!) P is TRUE, then prove Q is TRUE

Statements / Justifications Table

bumple: Proving an IF-THEN Statement

Prove: |F If > 4, then 2* > 22 AND =z is, the sum of the squares of four positive integers

THEN 2% > 22
Proof:
Statement Justification
1. z=a? + b + 2 + d? 1. Assumption (F part of IF-THEN)
2. a>1:b>1;¢>1;d>1 2. Assumption (F part of IF-THEN)
5. If z > 4, then 2° > 27 5. Assumption (iF part of IF-THEN)

6. 2% > z?

Statements / Justifications Table

bumple: Proving an IF-THEN Statement

Prove: |F If > 4, then 2* > 22 AND z is the sum of the squares of four positive integers

THEN 2% > 2
Proof:
Statement Justification
1. x=a”>+b>+c* +d° 1. Assumption (F part of IF-THEN)
2. a>1:b>1;¢>1;d>1 2. Assumption (F part of IF-THEN)
3. 2>1:0>12>1;d2 > 1 3. By Stmt #2 & arithmetic laws
b, x> 4 4. Stmts #1, #3, and arithmetic
5. fz>4then2" >o? | 5. Assumption (Fpq 2rtaionen
=) 6. 27 > z2 6. Stmts #4 and #5 -[fPtheno

- P
Then we've proved:

-0 4=

Last [rne

Models of Computation Hierarchy

Turing Machines

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

We’'ll start here ...

Last [rne

A (Mathematical) Theory ...

Mathematical theory

From Wikipedia, the free encyclopedia

A mathematical theory is a mathematical model of a branch of mathematics that is
based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based
on known axioms and definitions), and so in this sense can refer to an area of
mathematical research within the established framework.[1[2]

Explanatory depth is one of the most significant theoretical virtues in mathematics. For

example, set theory has the ability to] systematize and explainlnumber theory and

geometry/analysis. Despite the widely logical necessity (and self-evidence) of arithmetic
truths such as 1<3, 2+2=4, 6-1=5, and so on, a theory that just postulates an infinite
blizzard of such truths would be inadequate. Rather an adequate theory is one in which
such truths are derived from explanatorily prior axioms, such as the Peano Axioms or set
theoretic axioms, which lie at the foundation of ZFC axiomatic set theory.

The singular accomplishment of axiomatic set theory is its ability to give a foundation for
the derivation of the entirety of classical mathematics from a handful of axioms. The
reason set theory is so prized is because of its explanatory depth. So a mathematical
theory which just postulates an infinity of arithmetic truths without explanatory depth would
not be a serious competitor to Peano arithmetic or Zermelo-Fraenkel set theory.[3][4]

... must explain (predict) some
real-world phenomena ...

Finite Automata: “Simple” Computation / “Programs”

i
T

TTTIT
J'HHAAA

Finite Automata

« A finite automata or finite state machine (FSM) ...

e ..computes with a finite number of states

A Microwave Finite Automata

Input “symbols” change states
(possibly)

press stop press start

press start

press stop

States

Finite Automata: Not Just for Appliances

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an obiect to alter its behavior when its internal
state changes. This pattern is close to the concept ¢ f finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations or methods defined in the pattern's interface.

Finite Automata:

acommon——__
programming pattern

(More powerful?) Computation |
“Simulating” other (weaker?) Computation | |
(@ common theme this semester) |

o)‘

Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referre 1 to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine :an be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

Model-view-controller (MVC) is an FSM

States

The View draws states

Input events change states

onclick
onload
onmouseover
onmousedown

Aty FINIte Automata 1s a “Program”

* A restricted “program” with access to finite memory
» Actually, only 1 “cell” of memory!
* Possible contents of memory = # of “states”

* Finite Automata has different representations:

e Code (won't use in this class)
»>State diagrams

Finite Automata state diagram

Accept State
1
1 0
O O =0
Start State " ™ Inputs specify state transitions

States

Aty FINIte Automata 1s a “Program”

* A restricted “program” with access to finite memory
* Only 1 %cell” of memory!
* Possible contents of memory = # of states

* Finite Automata has different representations:

« Code (won't use in this class)
»>State diagrams

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 “cell” of memory!
* Possible contents of memory = # of states

 Finite Automata has different representations:
e Code (won't use in this class)
 State diagrams

»Formal math description
(essentially same as code but in a very different “programming language”)

Finite Automata: The Formal Definition

NDFFINITION

deterministic

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where
(DFA)

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Aralagy
[seneater : This is the “programming
Things in bold have precise formal language” for (deterministic)
definitions.

(be sure to look up and review the finite automata “programs

definition whenever you are unsure)

Finite Automata: The Formal Definition

4 5 components

Set or sequence?’

DEFINITION

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

mtertude: SETS and Sequences

= Both are: mathematical objects that group other objects
= Members of the group are called elements

= Can be: empty, finite, or infinite

= Can contain: other sets or sequences

Sets Sequences

» Unordered * Ordered

« Duplicates not allowed « Duplicates ok

 Notation: {} Notation: varies: (), comma, or concat
« Empty set written: @ or { } « Empty sequence: ()

A language is a (possibly infinite) < A tuple is a finite sequence eauences i=edz

- lot in this course
A d l 1 ° . . .
set of strings octusec @ otin A string is a finite sequence of characters

Setor|Sequence|?

A function is ... | ... a set of pairs .. has many representations:
(15t of each pair from domain, 2" from range) a mapping, a table, ...
DEFINITION

sequence

nite automaton is a 5-tuple (Q, X, 9, qo, F),Aﬁlﬁ:

set

() is a finite set called the states,

Set of pairs . ¥ 1s a finite set called the alphabet,<— set

(domain) | 3.0 Q x ©— Q is the transition function,
Pr—— }y go € @ is the staim Set (range)
(states can be 3+ F' C Q is the set of accept states.

anything) '\
set

A pair is ... H a sequence of 2 elements

Finite Automata: The Formal Definition

2 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 “cell” of memory!
* Possible contents of memory = # of states

 Finite Automata has different equivalent representations:
e Code (won't use in this class)
»State diagrams

»Formal math description
(think of it as code in a very different “programming language”)

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Arrows specify
transition function

Start State

Finite Automata:
State Diagram

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

An Example (as state diagram)

DEFINITION
A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where

1. @ is a finite set called the states, o

2. ¥ is a finite set called the alphabet, | Notthe same @
3. 0: Q x X—Q is the transition function,

4. qo € Q is the start state, and

5. F C Q is the set of accept states.

@

An Example (as state diagram)

An Example (as formal description)

M, =(Q,%,9,q1, F'), where
1. Q — {ql;qQaQ3}a

2. X ={0,1}, braces =
3. 0 1s described as ?neotdnu?jigtgg
0O 1
91 | 91 G2
42 | 43 G2
43 | 92 42,

4. ¢, 1s the start state, and
5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

M, =(Q,%,9,q1, F'), where

1. Q — {qlanaQ3}a
2.) = {0’1}, Possible chars of input

3. §is described Alphabet defines all
possible input strings

0 for the machine

-

d1 | d1 g2
q2 | 43 Qg2
q3 | 42 42,

4. ¢, 1s the start state, and
5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q18 the start state, ant'There are many different 3. 5 iS dCSCI‘i-DCd 1S “ . .
5. FCQis the set ofaccept ¢7 Ways to write a function, i.e, ,.A\nd this is ne’)’(t
a mapping .. Input symbol
- from every element in 0 1
the input set(s) (domain)
to some element in the
0 output set (range) ic . q1 q1 92 “
If in this e | g3 ¢ Then go to
state” this state”
43 | 92 g2,

4. ¢, 1s the start state, and
s 5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2.3 = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [91 42
‘ d2 | 43 42
1 43 | 42 g2,

- 4. ¢ 1s the start state, and
s 5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

2 o s st calldthe lpbedes L. Q= 1q1. 6, a3},
3. 0: Q x X—Q is the transition function, 2. Y = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
WARNING: This is a set! 0 1
0 di1 | 91 g2
q2 | 43 g2
D& 1 | @ g
! 4. ¢, 1s the start state, and

5. F = {qg}. Writing a non-set
. here makes this
WARNING: This is a set! not a DFA

A “Programming Language” +
v

A finite automaton is a S-tuple (Q, %, 6, qo, F'), where

DEFINITION

1. Q is a finite set called the states,
2. 3 is a finite set called the alphabet,

An Example (as formal description)

M, =(Q,%,9,q1, F'), where
1. Q — {ql;qQaQ3}:

3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0] 1
A “Program” —
0 € d1 | q1 g2
q2 | 43 @2
1 43 | 42 g2,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

This “analogy” is meant to help your intuition

,/,D@ym/ﬂ/f(/}y ”ﬁ/m/a}y

But it's important not to confuse with formal definitions.

Submit in-class work in gradescope!

In-class Exercise

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.

In-class Exercise: solution

* 2=1{q1,92, q3}

*2={ab}

o)
* 4(gl,a)=q2
- 8(q1,b)=qf
* 5(92,a)=q3
* 5(g2,b)=q3
* 0(93,a)=q2
* 0(93,b) =(q

* qo=1q1

+ F={q2}

(there are many ways

to define a function,

l.e.,, @ mapping from
domain elements to
range elements)

M = (Q&E:(qu[}:F)

A Computation Model Is ... (from lecture 1)

« Some definitions ...

e.g., A Natural Number is either
- Zero

- a Natural Number + 1

« And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

- Add the ones place of each num

- Carry anything over 10

- Repeat for each of remaining digits ...

A COmputatiOn Model Is ... (from lecture 1)

@ docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython pe

L] [] []
PY S O m e d efl n I tl O n S Grammar/python.gram). The version here omits details related to code generation and error recovet
eeo .

s==s=========c=========== START OF THE GRAMMAR =========================

General grammatical elements and rules:

#
#
* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

- These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the

Location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter

#* (like anu rule in PFG).

« And rules that describe how to compute with the definitions ...

@ docs.python.org/3/reference/executionmodel.html

4. Execution model
4.1. Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is execute:
a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intel
tively is a block. A script file (a file given as standard input to the interpreter or specified as a command line &
ment to the interpreter) is a code block. A script command (a command specified on the interpreter commant
with the -c option) is a code block. A module run as a top level script (as module __main__) from the comm:
line using a -m argument is also a code block. The string argument passed to the built-in functions eval() a

exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for .
bugging) and determines where and how execution continues after the code block's execution has complete

4 2 Namina and hindina

A Computation Model Is ... (from lecture 1)

DEFINITION

« Some definitions ...

A finite automaton is a S-tuple (Q), X, 4, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x ¥—Q is the tramnsition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

« And rules that describe how to compute with the definitions ...

P??7?

Sipser Fig 1.4

Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

 Input: “1101"

HINT: always work out concrete
examples to understand how a
machine works

