CS 420 / CS 620

(Deterministic) Finite Automata

Wednesday, September 10, 2025
UMass Boston Computer Science

%/{/{0«/{0@%@/{5&’

HW 0 Lecture videos (from 420-02)
+ De-9/10-noon-EDT Posted to Canvas

« Presented as-is, no guarantees
« Not accepting questions

« For emergency / supplemental use only
« Attendance still taken in lectures

HW 1
e Out: 9/8
e Due: 9/15 noon EDT

HW Hints and Reminders

* Problems must be: assigned to the correct pages

* Proof format must be; a Statements and Justifications table

« Machine formal descriptions must have:
- a name (if required), eg., M= ...
« a tuple with 5 components,

c eg,M=(Q,Z% 6 q, F) (where each variable is subsequently defined)
e inline is ok (make sure it's readable)

« components of the correct type
 E.g,set orsequence or ???

How to ask for HW help

(there’s no such thing as a stupid question, but ...)

.. there is such thing as a less useful | Useful question examples

question (gets less useful answers) (gets useful answers):

e “Is this correct?” * “I'm don’t understand this
notation AQ B> C...and |

 “I don't get It” couldn’t find it in the book”

. “Give me a hint?” e “| couldn’t find this word'’s

definition ...”

Most HW questions can be
answered by looking up the
meaning of a word or
notation or definition!

 “Do | need to do the
thing DFA thing?”

Last [rne

Models of Computation Hierarchy

Turing Machines

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

We’'ll start here ...

Last [rne

A (Mathematical) Theory ...

Mathematical theory

From Wikipedia, the free encyclopedia

A mathematical theory is a mathematical model of a branch of mathematics that is
based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based
on known axioms and definitions), and so in this sense can refer to an area of
mathematical research within the established framework.[1[2]

Explanatory depth is one of the most significant theoretical virtues in mathematics. For .. m u St explai n (p red iCt) SO m e

example, set theory has the ability to] systematize and explainlnumber theory and

geometry/analysis. Despite the widely logical hecessity (and self-evidence) of arithmetic Fea l—WO rl_d p h enomena ...

truths such as 1<3, 2+2=4, 6-1=5, and so on, a theory that just postulates an infinite

blizzard of such truths would be inadequate. Rather an adequate theory is one in which
such truths are derived from explanatorily prior axioms, such as the Peano Axioms or set
theoretic axioms, which lie at the foundation of ZFC axiomatic set theory.

The singular accomplishment of axiomatic set theory is its ability to give a foundation for / ’ HBG“’IG o
the derivation of the entirety of classical mathematics from a handful of axioms. The ‘ : '

7
>
(7~

reason set theory is so prized is because of its explanatory depth. So a mathematical
theory which just postulates an infinity of arithmetic truths without explanatory depth would
not be a serious competitor to Peano arithmetic or Zermelo-Fraenkel set theory.[3][4]

Finite Automata: “Simple” Computation / “Programs”

i
T

TTTIT
J'HHAAA

A Microwave Finite Automata

Input “symbols” change states
(possibly)

press stop press start

press start

press stop

States

Finite Automata: Not Just for Appliances

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an obiect to alter its behavior when its internal
state changes. This pattern is close to the concept ¢ f finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations or methods defined in the pattern's interface.

Finite Automata:

acommon——__
programming pattern

(More powerful?) Computation |
“Simulating” other (weaker?) Computation | |
(@ common theme this semester) |

o)‘

Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referre 1 to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine :an be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

Model-view-controller (MVC) is an FSM

States

The View draws states

Input events change states

onclick
onload
onmouseover
onmousedown

Aty FINIte Automata 1s a “Program”

* A restricted “program” with access to finite memory
» Actually, only 1 “cell” of memory!
* Possible contents of memory = # of “states”

* Finite Automata has different representations:

e Code (won't use in this class)
»>State diagrams

Finite Automata state diagram

Accept State
1
1 0
O O =0
Start State " ™ Inputs specify state transitions

States

Aty FINIte Automata 1s a “Program”

* A restricted “program” with access to finite memory
* Only 1 %cell” of memory!
* Possible contents of memory = # of states

* Finite Automata has different representations:

« Code (won't use in this class)
»>State diagrams

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 “cell” of memory!
* Possible contents of memory = # of states

 Finite Automata has different representations:
e Code (won't use in this class)
 State diagrams

»Formal math description
(essentially same as code but in a very different “programming language”)

Finite Automata: The Formal Definition

NDFFINITION

deterministic

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where
(DFA)

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Aralagy
[seneater : This is the “programming
Things in bold have precise formal language” for (deterministic)
definitions.

(be sure to look up and review the finite automata “programs

definition whenever you are unsure)

Finite Automata: The Formal Definition

4 5 components

Set or sequence?’

DEFINITION

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

mtertude: SETS and Sequences

= Both are: mathematical objects that group other objects
= Members of the group are called elements

= Can be: empty, finite, or infinite

= Can contain: other sets or sequences

Sets Sequences

» Unordered * Ordered

« Duplicates not allowed « Duplicates ok

 Notation: {} Notation: varies: (), comma, or concat
« Empty set written: @ or { } « Empty sequence: ()

A language is a (possibly infinite) < A tuple is a finite sequence eauences i=edz

- lot in this course
A d l 1 ° . . .
set of strings octusec @ otin A string is a finite sequence of characters

Set

O

|Sequence|?

A function is ...

set

.. a set of pairs

(15t of each pair from domain, 2" from range)

.. has many representations:
a mapping, a table, ...

DEFINITION

Set of pairs |

(domain)

Don’t know!
(states can be
anything)

_.% o - . .
3.0: Q x ¥— Q&Wzonﬁmmm,
}1 qo € Q is the start state, and Set (range)
5

nite automaton is a 5-tuple (Q, X, 9, qo, F),Aﬁlﬁ:

() is a finite|set|called the states,

is a finite|set|called the alphabet,<— set

. F' C Q is the|set|of accept states.

\ set

A pair is ... H a sequence of 2 elements

sequence

Finite Automata: The Formal Definition

2 5 components

DEFINITION
A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 “cell” of memory!
* Possible contents of memory = # of states

 Finite Automata has different equivalent representations:
e Code (won't use in this class)
»State diagrams

»Formal math description
(think of it as code in a very different “programming language”)

PEFINITION Finite Automata:
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where State D | agra M

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Arrows specify transition function

. 1 Accept State(s)
’ 0
a se
1
0
Start State Transition labels must be from alphabet

States

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

An Example (as state diagram)

DEFINITION

An Example (as formal description)

AﬁWZWQa 2757 QO7F)5 Where Ml :)762? E? 57 QI3 F)? Where
1. ()15 a finite set called the states, N o 1. Q _ {qu qo. (]3};

Note:
2. ¥ is a finite set called the alpbabet, | Notthe same @

3. 0: Q x ¥—Q is the transition function,
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

An Example (as state diagram)

2. ¥ ={0,1}, AN

3. 0 1s described as

braces =

set notation
(no duplicates)

0 1

di1 | 4q1 g2
d2 | 43 (g2
a3 | 92 42,

4. ¢, 1s the start state, and

5. F'={q2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, 53 qi, F), where

1. @ is a finite set called the states, 1 -
2. Y is a finite set called the alpbabet, ’ Q {(h » 42, 43 }:

3. 0: Q x X—Q is the transition function, 2. Y = {0,1}<,_ Possible chars of input

4. qo € Q is the start state, and 3. 5 1s described Alphabet defines all

5. F C Q is the set of accept states. possible input strings
0 for the machine

o | g1 | @1 Q2

1
‘ d2 | g3 Q2

g3 | 42 {2,

1 4. ¢, 1s the start state, and

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q18 the start state, ant'There are many different 3. 5 iS dCSCI‘i.DCd 1S “ . .
5. FCQis the set ofaccept ¢7 Ways to write a function, i.e, ,.A\nd this is ne’)’(t
a mapping .. Input symbol
- from every element in the O 1
input set(s) (domain)
to some element in the
0 output set (range) ic . q1 q1 92 “
If in this e | g3 ¢ Then go to
state” this state”
43 | 92 g2,

4. ¢ 1s the start state, and

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2.3 = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [91 42
‘ d2 | 43 42
1 43 | 42 g2,

- 4. ¢ 1s the start state, and

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _

2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’

3. 0: Q x X—Q is the transition function, 2. Y = {071},

4. qo € Q is the start state, and 3. § is described as

5. F C Q is the set of accept states.

WARNING: This is a set! 0 1

0 qd1 | 91 g2

q2 | 43 42
43 | 92 42,

4. ¢ 1s the start state, and

5. F ={q2}. Writinganon-set
here makes the
whole thing an
invalid DFA

WARNING: This is a set!

A “Programming Language” +
v

A finite automaton is a S-tuple (Q, %, 6, qo, F'), where

DEFINITION

1. Q is a finite set called the states,
2. 3 is a finite set called the alphabet,

An Example (as formal description)

M, =(Q,%,9,q1, F'), where
1. Q — {ql;qQaQ3}:

3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0] 1
A “Program” —
0 € d1 | q1 g2
q2 | 43 @2
1 43 | 42 g2,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

This “analogy” is meant to help your intuition

,/,D@ym/ﬂ/f(/}y ”ﬁ/m/a}y

But it's important not to confuse with formal definitions.

Submit in-class work in gradescope!

In-class Exercise (5min)

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.

In-class Exercise: solution

° Q:{q']’ C|2, q3} M = (Q26 qUFF)
*Y={a b}
o)

e &5 al = Q2 There are many different
(ql,a) q ways to write a function, i.e.,

* 0(9q1,b)=q1 a mapping ... |
FERRE
. 5(a3, a) = Q2 output set (range)
- 5(93,b) = q1

* 4o =1

* F="92. {q2}

?7?

A Computation Model Is ... (from lecture 1)

« Some definitions ...

e.g., A Natural Number is either
- Zero

- a Natural Number + 1

« And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

- Add the ones place of each num

- Carry anything over 10

- Repeat for each of remaining digits ...

A COmputatiOn Model Is ... (from lecture 1)

@ docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython pe

L] [] []
PY S O m e d efl n I tl O n S Grammar/python.gram). The version here omits details related to code generation and error recovet
eeo .

s==s=========c=========== START OF THE GRAMMAR =========================

General grammatical elements and rules:

#
#
* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

- These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the

Location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter

#* (like anu rule in PFG).

« And rules that describe how to compute with the definitions ...

@ docs.python.org/3/reference/executionmodel.html

4. Execution model
4.1. Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is execute:
a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intel
tively is a block. A script file (a file given as standard input to the interpreter or specified as a command line &
ment to the interpreter) is a code block. A script command (a command specified on the interpreter commant
with the -c option) is a code block. A module run as a top level script (as module __main__) from the comm:
line using a -m argument is also a code block. The string argument passed to the built-in functions eval() a

exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for .
bugging) and determines where and how execution continues after the code block's execution has complete

4 2 Namina and hindina

A Computation Model Is ... (from lecture 1)

DEFINITION

« Some definitions ...

A finite automaton is a S-tuple (Q), X, 4, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x ¥—Q is the tramnsition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

« And rules that describe how to compute with the definitions ...

P??7?

Sipser Fig 1.4

Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

 Input: “1101"

HINT: always work out concrete
examples to understand how a
machine works

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):
« Starts in start state

« Repeats:
« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

DFA Computation Rules

Informally

1. Q is a finite set called the states,

2. X is a finite set called the alphabet,

3. §: Q x ¥—Q is the transition function,
4. gy € Q is the start state, and

5. FC

. F C Q is the set of accept states.

Glven

« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

Formally (i.e., mathematically)

A DFA computation (~ “Program run”):
e Starts In start state

 Repeats:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

c M =

ow:

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):

Formally (i.e., mathematically)

- M = (Q72767QO7F)

W = UW1w2o - Wp

A DFA computation is a sequence of states
o Ty € Q Where:

e Starts In start state

« Repeats:
« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

* To = 4o

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Given
» A DFA (~ a “Program”) - M = (Q,X,09)q0, F)
« and Input = string of chars, eg “1101” e w =|wws--- ﬁ)n
A DFA computation is a.sequence of states
A DFA computation (~ “Program run”): Ty o Iy € Q\\‘;Iv%\e: \
 Starts in start state * | T0[=_40
. Repeats: * |T°; :(5(7“7;_1,?1)7;), for 1 = 1,...,'n
- Read 1 char from Input, and if i=1, r, = 5(ro w;)

« Change state according to transition rules

if i=2, ry= 6(ry, wy)

Result of computation: Ifi=3, r3= 6(r, ws)
« Accept if last state is Accept state
« Reject otherwise

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A DFA computation is a sequence of states
A DFA computation (~ “Program run”): ro - T, € Q Where:
o Starts in start state * To = 4o
» Repeats: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:

« Accept if last state is Accept state
« Reject otherwise

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (ie, mathematically)
Given
- A DFA (- a “Program”) - M = (Q,%,0,q0, F)
« and Input = string of chars, eg “1101” « W = WiW32 -+ Wy
A DFA computation is a sequence of states
A DFA computation (~ “Program run”): ro - T, € Q Where:
 Starts in start state * To = 4o
» Repeats: e r; =0(r;_1,w;), fori=1,...,n
« Read 1 char from Input, and —
- Change state according to transition rules This is still pretty

verbose ...

Result of computation: .
« Accept If last state is Accept state « Macceptswifr, €F
* Reject otherwise « Mrejectswifr, ¢ F

§: Q X ¥—Q is the transition function

A Multi-Step Transition Function |

set of pairs *=“0 or more”
Define a multi-step transition function: §: Q x X" — Q
 Domain:
+ Input state ¢ € () (doesn’t have to be start state) ¥" = set of all
e Input string w = wyiws -+ W, where w; € possible strings!
* Range:

 Output state (doesn't have to be an accept state)
(Defined recursively)

e Base case: ...

wtertide: REcCursive Definitions

function factorial(n)

{

Base case if (0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e., an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either:; | use of definition before
it is fully defined!
Base case e Zero, or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

« Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

« Successor of Successor of Successor of Zero (= “three”) ...

Recursive Data Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

This is a recursive definition:
Node is used before it is fully
defined (but must be “smaller”)

Recursive definitions have: Node { <N

base case o0 s
- ursiv
Node next;

(with a “smaller” object)

Strings Are Defined Recursively

A String is either:
Base case * the empty string (s), or

Recursive case « xa (non-empty string) where

e xis a string “smaller” argument
e« gisa ‘char’inX

Remember: all strings are
formed with “chars” from
some alphabet set X

Y =set of all
possible strings!

Recursive Data = Recursive Functions

A Natural Number is either:
« Zero, or
* the Successor of a Natural Number

function factorial(n)

{

Base case if (== 0)

return 1;
Recursive case else
return * factorial(-1);

Recursive case must
have “smaller”) y
argument Recursive functions are

recursive because ...
its Input data is
recursively defined!

A Multi-Step Transition Function

Define a multi-step transition function: §:Q x ¥* — Q

 Domain:
+ Input state ¢ € () (doesn't have to be start state)

* Inputstring w = wiWs -+ Wn where w; € X

* Range: -
- Output state (doesn’t have to be an accept state) e eete
Recursive Function
. . A String is either:
(Defl ned reCU rS|Ve|.y) Base case e the empty string (E), or
+ xa (non-empty string)
A where

o Base case 5((]7 5‘) — xis a string

e gisa‘“char’inX

A Multi-Step Transition Function

Define a multi-step transition function: §: Q x X" — Q
 Domain:
« Input state ¢ € () (doesn't have to be start state)
* Inputstring w = wiw2 -+ Wy where w; € X

* Range: |
 Output state (doesn't have to be an accept state) e ety

Recursive Function

A String is either:
 the empty string (), or
Recursive case e xg (non-empty string)

(Defined recursively)

A where
o Base case () — Recursive call u " xis a string
6 q, <& q smaller” argument i

string char

A

e Recursive Case 6(q, wl”LUn) —

where w’ = wy -+ - w,_1

(or “extended transition function” --- HMU 2.2.4) 0: Q X L—> Q is the transition functmn_

A Multi-Step Transition Function

Define a multi-step transition function: §:Q x ©* — Q

 Domain:
+ Input state ¢ € () (doesn't have to be start state)

* Inputstring w = wiWs * - Wn where w; € X

* Range: -
- Output state (doesn’t have to be an dccept state) e eete
Recursive Function
. . A String is either:
(Defl n ed reCU rS |Ve ly) ° the empty string (E), or
+ xa (non-empty string)
A where
_ o Xxi tri
° Base case 5((]7 6) T q . aliizfc';:;g' inX

ey e

e Recursive Case 6(q, w'w,) =6(0(q,w"),w,)

where w' = wq - - w,_1

2 /‘w/'a«@é

DFA Computation Rules

Formally (i.e., mathematically)

- M = (Q72757QO7F)

W = UW1w2o - Wp

A DFA computation is a sequence of states
o - Ty € Q Where:

* To = qo

* T; :(5(7“7;_1,’607;), for ¢ = 1,...,72,

This is still pretty
verbose ...

« Macceptswifr €F
* Mrejectswifr &F

DFA Computation Rules

Formally (i.e., mathematically)

- M = (Q72757QO7F)

W = UW1w2o - Wp

» Maccepts w if 6(qo, w) € F

Alphabets, Strings, Languages

An alphabet defines “all possible strings”

« An alphabet is a non-empty finite set of symbols | (e with non-atpnavet
D1 = {O,l} symbols are impossible)

22 — {a"b‘ C‘d‘e‘f'g"h'i"j‘k‘l'm“n‘o‘p'q"r‘S‘t'u“v"w‘x“y‘z}

A string is a finite sequence of symbols from an alphabet

01001 abracadabra = Empty string (length 0)
(e symbol is not in the alphabet!)

o A language IS a set of strings Languages can be infinite
A = {good, bad}

A = {w| w contains at least one 1 and

0 {} T an even number of Os,rfollow the last 1}

The Empty set is a language “the set of all ...” “such that ...”

Machine and Language Terminology

DFA M accepts w string
M recognizes language A Set of strings

it A = {w| M accepts w}

“the set of all ...” “such that...”

Machine and Language Terminology

DFA M accepts w Using L as function mapping
. Machine - Language is
M recognizes lﬂng”age L(M) common notation

L(M) = {w| M accepts w}

Machine and Language Terminology

DFA M accepts w
M recognizes language L(M)
e Language of M = L(M) ={w| M accepts w}

Languages Are Computation Models

« The language of a machine = set of strings that it accepts

« E.g, a DFA recognizes a language

]]]]]]]]]]

A computation model = set of machines it defines e

called the s

a fin called tk lphbt
Qx,\: Q the transition function,
3 h start state, and

et of accept s

2. %is
3.
4:
5. F

« E.g, all possible DFAs are a computation model

= set of set of strings

Thus:|a computation model equivalently = a set of languages

This class Is really about studying sets of languages!

Regular Languages

» first set of languages we will study: regular languages

This class Is really about studying sets of languages!

Regular Languages: Definition

If a deterministic finite automata (DFA) recognizes a language,
then that language is called a regular language.

A Language, Regular or Not?

* [f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

Proof : If a DFA recognizes a language,
then that language Is called a regular language.

(modus ponens)

e |If given: a Language A

* |s A a regular language?
* Not necessarily!

