INTRODUCTION

We begin with an overview of those areas in the theory of computation that
we present in this course. Following that, you’ll have a chance to learn and/or
review some mathematical concepts that you will need later.

0.1

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexity—this
question is interpreted differently, and the answers vary according to the in-
terpretation. Following this introductory chapter, we explore each area in a
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2 CHAPTER O/ INTRODUCTION

separate part of this book. Here, we introduce these parts in reverse order be-
cause by starting from the end you can better understand the reason for the
beginning.

COMPLEXITY THEORY

Computer problems come in different varieties; some are easy, and some are
hard. For example, the sorting problem is an easy one. Say that you need to
arrange a list of numbers in ascending order. Even a small computer can sort
a million numbers rather quickly. Compare that to a scheduling problem. Say
that you must find a schedule of classes for the entire university to satisfy some
reasonable constraints, such as that no two classes take place in the same room
at the same time. The scheduling problem seems to be much harder than the
sorting problem. If you have just a thousand classes, finding the best schedule
may require centuries, even with a supercomputer.

What makes some problems computationally havd and others easy?

This is the central question of complexity theory. Remarkably, we don’t know
the answer to it, though it has been intensively researched for over 40 years.
Later, we explore this fascinating question and some of its ramifications.

In one important achievement of complexity theory thus far, researchers have
discovered an elegant scheme for classifying problems according to their com-
putational difficulty. It is analogous to the periodic table for classifying elements
according to their chemical properties. Using this scheme, we can demonstrate
a method for giving evidence that certain problems are computationally hard,
even if we are unable to prove that they are.

You have several options when you confront a problem that appears to be
computationally hard. First, by understanding which aspect of the problem is at
the root of the difficulty, you may be able to alter it so that the problem is more
easily solvable. Second, you may be able to settle for less than a perfect solution
to the problem. In certain cases, finding solutions that only approximate the
perfect one is relatively easy. Third, some problems are hard only in the worst
case situation, but easy most of the time. Depending on the application, you may
be satisfied with a procedure that occasionally is slow but usually runs quickly.
Finally, you may consider alternative types of computation, such as randomized
computation, that can speed up certain tasks.

One applied area that has been affected directly by complexity theory is the
ancient field of cryptography. In most fields, an easy computational problem is
preferable to a hard one because easy ones are cheaper to solve. Cryptography
is unusual because it specifically requires computational problems that are hard,
rather than easy. Secret codes should be hard to break without the secret key
or password. Complexity theory has pointed cryptographers in the direction of
computationally hard problems around which they have designed revolutionary
new codes.
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0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 3

COMPUTABILITY THEORY

During the first half of the twentieth century, mathematicians such as Kurt
Godel, Alan Turing, and Alonzo Church discovered that certain basic problems
cannot be solved by computers. One example of this phenomenon is the prob-
lem of determining whether a mathematical statement is true or false. This task
is the bread and butter of mathematicians. It seems like a natural for solution
by computer because it lies strictly within the realm of mathematics. But no
computer algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers that eventually would help lead to
the construction of actual computers.

The theories of computability and complexity are closely related. In com-
plexity theory, the objective is to classify problems as easy ones and hard ones;
whereas in computability theory, the classification of problems is by those that
are solvable and those that are not. Computability theory introduces several of
the concepts used in complexity theory.

AUTOMATA THEORY

Automata theory deals with the definitions and properties of mathematical mod-
els of computation. These models play a role in several applied areas of computer
science. One model, called the finite automaton, is used in text processing, com-
pilers, and hardware design. Another model, called the context-free grammar, is
used in programming languages and artificial intelligence.

Automata theory is an excellent place to begin the study of the theory of
computation. The theories of computability and complexity require a precise
definition of a computer. Automata theory allows practice with formal definitions
of computation as it introduces concepts relevant to other nontheoretical areas
of computer science.

0.2

MATHEMATICAL NOTIONS AND TERMINOLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, tools, and notation that we expect to use.

SETS

A set is a group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbols, and even other sets. The objects in a set are
called its elements or members. Sets may be described formally in several ways.
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4 CHAPTER O/ INTRODUCTION

One way is by listing a set’s elements inside braces. Thus the set
S = {7,21,57}

contains the elements 7, 21, and 57. The symbols € and ¢ denote set member-
ship and nonmembership. We write 7 € {7,21,57} and 8 ¢ {7,21,57}. For two
sets A and B, we say that A is a subset of B, written A C B, if every member of
A also is a member of B. We say that A is a proper subset of B, written A C B,
if A is a subset of B and not equal to B.

The order of describing a set doesn’t matter, nor does repetition of its mem-
bers. We get the same set S by writing {57,7,7,7,21}. If we do want to take the
number of occurrences of members into account, we call the group a multiset
instead of a set. Thus {7} and {7, 7} are different as multisets but identical as
sets. An infinite set contains infinitely many elements. We cannot write a list of
all the elements of an infinite set, so we sometimes use the “. ..” notation to mean
“continue the sequence forever.” Thus we write the set of natural numbers N
as

{1,2,3,...}.
The set of integers Z is written as
{...,—2,-1,0,1,2,...}.

The set with zero members is called the empty set and is written (). A set with
one member is sometimes called a singleton set, and a set with two members is
called an unordered pair.

When we want to describe a set containing elements according to some rule,
we write {n| rule about n}. Thus {n|n = m? for some m € N’} means the set of
perfect squares.

If we have two sets A and B, the union of A and B, written AUDB, is the set we
get by combining all the elements in A and B into a single set. The intersection
of A and B, written A N B, is the set of elements that are in both A and B. The
complement of A, written A, is the set of all elements under consideration that
are not in A.

As is often the case in mathematics, a picture helps clarify a concept. For sets,
we use a type of picture called a Venn diagram. It represents sets as regions
enclosed by circular lines. Let the set START-t be the set of all English words
that start with the letter “t”. For example, in the figure, the circle represents the
set START-t. Several members of this set are represented as points inside the
circle.
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START-t
terrific

tundra
theory

FIGURE 0.1
Venn diagram for the set of English words starting with

@
t

€,

Similarly, we represent the set END-z of English words that end with “z” in
the following figure.

END-Z
quartz
jazz

razzmatazz

FIGURE 0.2
Venn diagram for the set of English words ending with “z”

To represent both sets in the same Venn diagram, we must draw them so that
they overlap, indicating that they share some elements, as shown in the following
figure. For example, the word topaz is in both sets. The figure also contains a
circle for the set START-j. It doesn’t overlap the circle for START-t because no
word lies in both sets.

START-t END-Z  START-j

topaz jazz

FIGURE 0.3
Overlapping circles indicate common elements
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6 CHAPTER O/ INTRODUCTION

The next two Venn diagrams depict the union and intersection of sets A
and B.

(a) (b)

FIGURE 0.4
Diagrams for (a) AUB and (b) AN B

SEQUENCES AND TUPLES

A sequence of objects is a list of these objects in some order. We usually designate
a sequence by writing the list within parentheses. For example, the sequence 7,
21, 57 would be written

(7,21,57).

The order doesn’t matter in a set, but in a sequence it does. Hence (7,21, 57) is
not the same as (57,7,21). Similarly, repetition does matter in a sequence, but
it doesn’t matter in a set. Thus (7,7,21,57) is different from both of the other
sequences, whereas the set {7,21,57} is identical to the set {7,7,21,57}.

As with sets, sequences may be finite or infinite. Finite sequences often are
called tuples. A sequence with k elements is a k-tuple. Thus (7,21,57) is a
3-tuple. A 2-tuple is also called an ordered pair.

Sets and sequences may appear as elements of other sets and sequences. For
example, the power set of A is the set of all subsets of A. If A is the set {0,1},
the power set of A is the set { (), {0}, {1}, {0,1} }. The set of all ordered pairs
whose elements are Os and 1sis { (0,0), (0,1), (1,0), (1,1) }.

It A and B are two sets, the Cartesian product or cross product of A and
B, written A x B, is the set of all ordered pairs wherein the first element is a
member of A and the second element is a member of B.

EXAMPLE 0.5 e . — —
IfA={1,2} and B = {z,y, 2z},
Ax B={(Lxz), (1,y), (1,2), (2,2), (2,9), (2,2) }.

We can also take the Cartesian product of k sets, A1, A, ..., A, written
A1 x Ag X -+ x Ayg. Itis the set consisting of all k-tuples (a1, as, ..., ar) where
a; € A;.
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EXAMPLE 0.6 N EESSERSREESREAA AR EREEERRERRRRRAREEAREERRRRRRRERRRERRE
If A and B are as in Example 0.5,
AxBxA={(1,z,1), (1,2,2), (1,y,1), (1,4,2), (1,2,1), (1,2,2),
(2,z,1), (2,2,2), (2,y,1), (2,9,2), (2,2,1), (2,2,2) }

If we have the Cartesian product of a set with itself, we use the shorthand
k
Ax Ax - x A= A"

EXAMPLE 0.7 e eEENENEEESEEEEEEEEEEEEEESRRRSRRRESESEEESSESSRSSRSSEREESEEEEESSERREEES

The set N2 equals N x N. It consists of all ordered pairs of natural numbers.
We also may write it as {(, )] 7,5 > 1}.

FUNCTIONS AND RELATIONS

Functions are central to mathematics. A function is an object that sets up an
input-output relationship. A function takes an input and produces an output.
In every function, the same input always produces the same output. If f is a
function whose output value is b when the input value is a, we write

f(a) =b.

A function also is called a mapping, and, if f(a) = b, we say that f maps a to b.

For example, the absolute value function abs takes a number x as input and
returns z if x is positive and —z if x is negative. Thus abs(2) = abs(—2) =
2. Addition is another example of a function, written add. The input to the
addition function is an ordered pair of numbers, and the output is the sum of
those numbers.

The set of possible inputs to the function is called its domain. The outputs
of a function come from a set called its 7ange. The notation for saying that f is
a function with domain D and range R is

f: D—R.

In the case of the function abs, if we are working with integers, the domain and
the range are Z, so we write abs: Z— Z. In the case of the addition function
for integers, the domain is the set of pairs of integers Z x Z and the range is Z,
so we write add: Z x Z— Z. Note that a function may not necessarily use all
the elements of the specified range. The function abs never takes on the value
—1 even though —1 € Z. A function that does use all the elements of the range
is said to be onto the range.
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8 CHAPTER O/ INTRODUCTION

We may describe a specific function in several ways. One way is with a pro-
cedure for computing an output from a specified input. Another way is with a
table that lists all possible inputs and gives the output for each input.

EXAMPLE 0.8 - —
Consider the function f: {0,1,2,3,4}—{0,1,2,3,4}.
f(n)

%wMHO‘:
O = W N =

This function adds 1 to its input and then outputs the result modulo 5. A number
modulo m is the remainder after division by m. For example, the minute hand
on a clock face counts modulo 60. When we do modular arithmetic, we define
Zn ={0,1,2,...,m — 1}. With this notation, the aforementioned function f
has the form f: Z5— Z5.

EXAMPLE 0.9 - S

Sometimes a two-dimensional table is used if the domain of the function is the
Cartesian product of two sets. Here is another function, g: Z4 x Z;— Z4. The
entry at the row labeled 7 and the column labeled j in the table is the value of

9(i, ).
g0 1 2 3
0oj0o 1 2 3
111 2 30
212 3 0 1
313 01 2

The function g is the addition function modulo 4.

When the domain of a function f is A; X - - - X A, for some sets A1, ..., A, the
input to f is a k-tuple (a1, aq, ..., a;) and we call the a; the arguments to f. A
function with k arguments is called a k-ary function, and k is called the arity of
the function. If £ is 1, f has a single argument and f is called a unary function.
If k is 2, f is a binary function. Certain familiar binary functions are written
in a special infix notation, with the symbol for the function placed between its
two arguments, rather than in prefix notation, with the symbol preceding. For
example, the addition function add usually is written in infix notation with the

+ symbol between its two arguments as in a + b instead of in prefix notation
add(a,b).
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0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 9

A predicate or property is a function whose range is {TRUE, FALSE}. For
example, let even be a property that is TRUE if its input is an even number and
FALSE if its input is an odd number. Thus even(4) = TRUE and even(5) =
FALSE.

A property whose domain is a set of k-tuples A x --- x A is called a relation,
a k-ary relation, or a k-ary relation on A. A common case is a 2-ary relation,
called a binary relation. When writing an expression involving a binary rela-
tion, we customarily use infix notation. For example, “less than” is a relation
usually written with the infix operation symbol <. “Equality”, written with the
= symbol, is another familiar relation. If R is a binary relation, the statement
aRb means that aRb = TRUE. Similarly, if R is a k-ary relation, the statement
R(ay,...,a;) means that R(ay,...,a) = TRUE.

EXAMPLE o.'l o ...................................................... RN ERSEEERREEAEEEAEEEEEREERRSSESRRSSAEERNSREEERRSEERRSS

In a children’s game called Scissors—Paper—Stone, the two players simultaneously
select a member of the set {SCISSORS, PAPER, STONE} and indicate their selec-
tions with hand signals. If the two selections are the same, the game starts over.
If the selections differ, one player wins, according to the relation beats.

beats | SCISSORS PAPER STONE
SCISSORS | FALSE  TRUE FALSE
PAPER FALSE ~ FALSE TRUE
STONE TRUE  FALSE FALSE

From this table we determine that SCISSORS beats PAPER is TRUE and that
PAPER beats SCISSORS is FALSE.

Sometimes describing predicates with sets instead of functions is more con-
venient. The predicate P: D— {TRUE, FALSE} may be written (D, S), where
S = {a € D| P(a) = TRUE}, or simply S if the domain D is obvious from the
context. Hence the relation beats may be written

{(SCISSORS, PAPER), (PAPER, STONE), (STONE, SCISSORS)}.

A special type of binary relation, called an equivalence relation, captures the
notion of two objects being equal in some feature. A binary relation R is an
equivalence relation if R satisfies three conditions:

1. R is reflexive if for every z, zRux;
2. R is symmetric if for every x and y, xRy implies yRz; and
3. Ris transitive if for every z, y, and z, xRy and yRz implies zRz.
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10 CHAPTER O/ INTRODUCTION

EXAMPLE o.'l I — . . R

Define an equivalence relation on the natural numbers, written =7. Fori,j € N,
say thati =7 j, if i — j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as ¢ — i = 0, which is a multiple
of 7. Second, it is symmetric, as ¢ — j is a multiple of 7 if j — 4 is a multiple of 7.
Third, it is transitive, as whenever ¢ — j is a multiple of 7 and j — k is a multiple
of 7, theni — k = (i — j) + (j — k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called nodes or vertices, and the lines are
called edges, as shown in the following figure.

(a) (b)

FIGURE 0.12
Examples of graphs

The number of edges at a particular node is the degree of that node. In
Figure 0.12(a), all the nodes have degree 2. In Figure 0.12(b), all the nodes have
degree 3. No more than one edge is allowed between any two nodes. We may
allow an edge from a node to itself, called a self-loop, depending on the situation.

In a graph G that contains nodes ¢ and j, the pair (3, j) represents the edge that
connects ¢ and j. The order of 7 and j doesn’t matter in an undirected graph,
so the pairs (4,7) and (j,7) represent the same edge. Sometimes we describe
undirected edges with unordered pairs using set notation as in {4, j}. If V' is the
set of nodes of G and FE is the set of edges, we say G = (V, E)). We can describe
a graph with a diagram or more formally by specifying V and E. For example, a
formal description of the graph in Figure 0.12(a) is

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5.1)}),
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0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 11

and a formal description of the graph in Figure 0.12(b) is

({1.2.3,4}, {(1,2), (1,3), (1,4), (2,3), (2.4), (3,4)}).

Graphs frequently are used to represent data. Nodes might be cities and edges
the connecting highways, or nodes might be people and edges the friendships
between them. Sometimes, for convenience, we label the nodes and/or edges of
a graph, which then is called a labeled graph. Figure 0.13 depicts a graph whose
nodes are cities and whose edges are labeled with the dollar cost of the cheapest
nonstop airfare for travel between those cities if flying nonstop between them is
possible.

FIGURE 0.13
Cheapest nonstop airfares between various cities

We say that graph G is a subgraph of graph H if the nodes of G are a subset
of the nodes of H, and the edges of G are the edges of H on the corresponding
nodes. The following figure shows a graph H and a subgraph G.

Graph H

Subgraph G
shown darker

FIGURE 0.14
Graph G (shown darker) is a subgraph of H
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12 CHAPTER O/ INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a #ree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. 'The nodes of degree 1 in a tree, other than the root, are called the leaves
of the tree.

(a) (b) (©

FIGURE 0.15
(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

A directed graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the outdegree of that
node, and the number of arrows pointing to a particular node is the indegree.

FIGURE 0.16
A directed graph
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0.2 MATHEMATICAL NOTIONS AND TERMINOLOGY 13

In a directed graph, we represent an edge from i to j as a pair (i,5). The
formal description of a directed graph G is (V, E), where V is the set of nodes
and F is the set of edges. The formal description of the graph in Figure 0.16 is

({1,2,3,4,5,6}, {(1,2),(1,5), (2,1), (2,4), (5,4), (5,6), (6,1), (6,3)}).

A path in which all the arrows point in the same direction as its steps is called a
directed path. A directed graph is strongly connected if a directed path connects
every two nodes. Directed graphs are a handy way of depicting binary relations.
If R is a binary relation whose domain is D x D, a labeled graph G = (D, E)
represents R, where E = {(z,y)| xRy}.

EXAMPLE o.'l 7 ...................................................... RN ERSEEERREEAEEEAEEEEEREERRSSESRRSSAEERNSREEERRSEERRSS

The directed graph shown here represents the relation given in Example 0.10.

FIGURE 0.18
The graph of the relation beats

STRINGS AND LANGUAGES

Strings of characters are fundamental building blocks in computer science. The
alphabet over which the strings are defined may vary with the application. For
our purposes, we define an alphabet to be any nonempty finite set. The members
of the alphabet are the symbols of the alphabet. We generally use capital Greek
letters 3 and T" to designate alphabets and a typewriter font for symbols from an
alphabet. The following are a few examples of alphabets.

¥ ={0,1}
Y9 ={a,b,c,d,e,f,g,h,i,j,k,1,mn,0,p,q,r,s,t,u,v,wx7Yy,2}
P: {07 17X7Y7Z}
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A string over an alpbabet is a finite sequence of symbols from that alphabet,
usually written next to one another and not separated by commas. If ¥; = {0,1},
then 01001 is a string over . If 32 = {a,b, c,..., 2}, then abracadabrais a
string over Y. If w is a string over ¥, the length of w, written |w/, is the number
of symbols that it contains. The string of length zero is called the empty string
and is written €. The empty string plays the role of 0 in a number system. If w
has length n, we can write w = wyws - - - w,, where each w; € X. The reverse
of w, written w™, is the string obtained by writing w in the opposite order (i.e.,
Wy Wy —1 - - - w1). String z is a substring of w it z appears consecutively within w.
For example, cad is a substring of abracadabra.

If we have string z of length m and string y of length n, the concatenation
of x and y, written xy, is the string obtained by appending y to the end of z, as
inxy---TmY1 - Yn. 10 concatenate a string with itself many times, we use the
superscript notation z* to mean

k
—

The lexicograpbic order of strings is the same as the familiar dictionary order.
We’ll occasionally use a modified lexicographic order, called shortlex order or
simply string order, that is identical to lexicographic order, except that shorter
strings precede longer strings. Thus the string ordering of all strings over the
alphabet {0,1} is

(,0,1,00,01,10,11,000,...).

Say that string x is a prefix of string y if a string z exists where xz = y, and that
x is a proper prefix of y if in addition z # y. A language is a set of strings. A
language is prefix-free if no member is a proper prefix of another member.

BOOLEAN LOGIC

Boolean logic is a mathematical system built around the two values TRUE and
FALSE. Though originally conceived of as pure mathematics, this system is now
considered to be the foundation of digital electronics and computer design. The
values TRUE and FALSE are called the Boolean values and are often represented
by the values 1 and 0. We use Boolean values in situations with two possibilities,
such as a wire that may have a high or a low voltage, a proposition that may be
true or false, or a question that may be answered yes or no.

We can manipulate Boolean values with the Boolean operations. The sim-
plest Boolean operation is the negation or NOT operation, designated with the
symbol —. The negation of a Boolean value is the opposite value. Thus =0 = 1
and -1 = 0. We designate the comjunction or AND operation with the sym-
bol A. The conjunction of two Boolean values is 1 if both of those values are 1.
The disjunction or OR operation is designated with the symbol V. The disjunc-
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tion of two Boolean values is 1 if either of those values is 1. We summarize this
information as follows.

0OANO=0 Ov0o=20 -0=1
0AN1=0 Ovli=1 —1=0
IN0=0 1v0o=1
IN1T=1 1vli=1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and X to
construct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” and @) represents the
truth of the statement “today is Monday”, we may write P A @ to represent the
truth value of the statement “the sun is shining and today is Monday” and sim-
ilarly for P v @ with and replaced by or. The values P and @ are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the & symbol and is 1 if either but not both of
its two operands is 1. The equality operation, written with the symbol <, is 1
if both of its operands have the same value. Finally, the implication operation
is designated by the symbol — and is 0 if its first operand is 1 and its second
operand is 0; otherwise, — is 1. We summarize this information as follows.

000=0 0<0=1 0—-0=1
0pl=1 0+ 1=0 0—>1=1
1e0=1 1<0=0 1—-0=0
1¢1=0 l11=1 1—->1=1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following identities show. The two expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

PvQ (=P A-Q)
P—Q -PVvQ
Pe@ (P2Q)NQ—P)
Pe&Q —(PeQ)
The distributive law for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distributive law for addition and multi-

plication, which states that a x (b+¢) = (a x b) + (a x ¢). The Boolean version
comes in two forms:

* PA(QV R)equals (PAQ)V (P A R),and its dual
* PV(QAR)equals (PVQ)A(PVR).
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SUMMARY OF MATHEMATICAL TERMS

Alphabet
Argument

Binary relation
Boolean operation
Boolean value
Cartesian product

A finite, nonempty set of objects called symbols

An input to a function

A relation whose domain is a set of pairs

An operation on Boolean values

The values TRUE or FALSE, often represented by 1 or 0

An operation on sets forming a set of all tuples of elements from
respective sets

Complement An operation on a set, forming the set of all elements not present
Concatenation An operation that joins strings together

Conjunction Boolean AND operation

Connected graph A graph with paths connecting every two nodes

Cycle A path that starts and ends in the same node

Directed graph A collection of points and arrows connecting some pairs of points
Disjunction Boolean OR operation

Domain The set of possible inputs to a function

Edge A line in a graph

Element An object in a set

Empty set The set with no members

Empty string The string of length zero

Equivalence relation

A binary relation that is reflexive, symmetric, and transitive

Function An operation that translates inputs into outputs

Graph A collection of points and lines connecting some pairs of points
Intersection An operation on sets forming the set of common elements
k-tuple A list of k objects

Language A set of strings

Member An object in a set

Node A point in a graph

Ordered pair A list of two elements

Path A sequence of nodes in a graph connected by edges
Predicate A function whose range is { TRUE, FALSE}

Property A predicate

Range The set from which outputs of a function are drawn
Relation A predicate, most typically when the domain is a set of k-tuples
Sequence A list of objects

Set A group of objects

Simple path A path without repetition

Singleton set A set with one member

String A finite list of symbols from an alphabet

Symbol A member of an alphabet

Tree A connected graph without simple cycles

Union An operation on sets combining all elements into a single set
Unordered pair A set with two members

Vertex A point in a graph
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0.3

DEFINITIONS, THEOREMS, AND PROOFS

Theorems and proofs are the heart and soul of mathematics and definitions are
its spirit. These three entities are central to every mathematical subject, includ-
ing ours.

Definitions describe the objects and notions that we use. A definition may be
simple, as in the definition of sez given earlier in this chapter, or complex as in
the definition of security in a cryptographic system. Precision is essential to any
mathematical definition. When defining some object, we must make clear what
constitutes that object and what does not.

After we have defined various objects and notions, we usually make math-
ematical statements about them. Typically, a statement expresses that some
object has a certain property. The statement may or may not be true; but like a
definition, it must be precise. No ambiguity about its meaning is allowed.

A proof is a convincing logical argument that a statement is true. In mathe-
matics, an argument must be airtight; that is, convincing in an absolute sense. In
everyday life or in the law, the standard of proofis lower. A murder trial demands
proof “beyond any reasonable doubt.” The weight of evidence may compel the
jury to accept the innocence or guilt of the suspect. However, evidence plays
no role in a mathematical proof. A mathematician demands proof beyond any
doubt.

A theorem is a mathematical statement proved true. Generally we reserve the
use of that word for statements of special interest. Occasionally we prove state-
ments that are interesting only because they assist in the proof of another, more
significant statement. Such statements are called lemmas. Occasionally a theo-
rem or its proof may allow us to conclude easily that other, related statements
are true. These statements are called corollaries of the theorem.

FINDING PROOFS

The only way to determine the truth or falsity of a mathematical statement is
with a mathematical proof. Unfortunately, finding proofs isn’t always easy. It
can’t be reduced to a simple set of rules or processes. During this course, you will
be asked to present proofs of various statements. Don’t despair at the prospect!
Even though no one has a recipe for producing proofs, some helpful general
strategies are available.

First, carefully read the statement you want to prove. Do you understand
all the notation? Rewrite the statement in your own words. Break it down and
consider each part separately.
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18 CHAPTER O/ INTRODUCTION

Sometimes the parts of a multipart statement are not immediately evident.
One frequently occurring type of multipart statement has the form “P if and
only if Q”, often written “P iff )”, where both P and @ are mathematical state-
ments. This notation is shorthand for a two-part statement. The first part is “P
only if ),” which means: If P is true, then Q) is true, written P = (). The second
is “P if Q,” which means: If Q) is true, then P is true, written P < (. The first
of these parts is the forward direction of the original statement and the second
is the reverse direction. We write “P if and only if )” as P <= (). To prove a
statement of this form, you must prove each of the two directions. Often, one of
these directions is easier to prove than the other.

Another type of multipart statement states that two sets A and B are equal.
The first part states that A is a subset of B, and the second part states that B
is a subset of A. Thus one common way to prove that A = B is to prove that
every member of A also is a member of B, and that every member of B also is a
member of A.

Next, when you want to prove a statement or part thereof, try to get an in-
tuitive, “gut” feeling of why it should be true. Experimenting with examples is
especially helpful. Thus if the statement says that all objects of a certain type
have a particular property, pick a few objects of that type and observe that they
actually do have that property. After doing so, try to find an object that fails to
have the property, called a counterexample. 1f the statement actually is true, you
will not be able to find a counterexample. Seeing where you run into difficulty
when you attempt to find a counterexample can help you understand why the
statement is true.

EXAMPLE 0.19 .................................. . . R

Suppose that you want to prove the statement for every graph G, the sum of the
degrees of all the nodes in G is an even number.

First, pick a few graphs and observe this statement in action. Here are two
examples.

N
sum = 24242 sum = 2+3+4+3+2
=6 =14

Next, try to find a counterexample; that is, a graph in which the sum is an odd
number.
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Every time an edge is added,
the sum increases by 2.

Can you now begin to see why the statement is true and how to prove it?

If you are still stuck trying to prove a statement, try something easier. Attempt
to prove a special case of the statement. For example, if you are trying to prove
that some property is true for every k > 0, first try to prove it for k = 1. If you
succeed, try it for £ = 2, and so on until you can understand the more general
case. If a special case is hard to prove, try a different special case or perhaps a
special case of the special case.

Finally, when you believe that you have found the proof, you must write it
up properly. A well-written proof is a sequence of statements, wherein each one
follows by simple reasoning from previous statements in the sequence. Carefully
writing a proof is important, both to enable a reader to understand it, and for
you to be sure that it is free from errors.

The following are a few tips for producing a proof.

* Be patient. Finding proofs takes time. If you don’t see how to do it right
away, don’t worry. Researchers sometimes work for weeks or even years to
find a single proof.

* Come back to it. Look over the statement you want to prove, think about
it a bit, leave it, and then return a few minutes or hours later. Let the
unconscious, intuitive part of your mind have a chance to work.

* Be meat. When you are building your intuition for the statement you are
trying to prove, use simple, clear pictures and/or text. You are trying to
develop your insight into the statement, and sloppiness gets in the way of
insight. Furthermore, when you are writing a solution for another person
to read, neatness will help that person understand it.

* Be concise. Brevity helps you express high-level ideas without getting lost in
details. Good mathematical notation is useful for expressing ideas concisely.
But be sure to include enough of your reasoning when writing up a proof
so that the reader can easily understand what you are trying to say.
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For practice, let’s prove one of DeMorgan’s laws.

THEOREM 0,20  -rrsrrmssemmessssssssesssie e AR AR e
For any two sets Aand B, AUB = AN B.

First, is the meaning of this theorem clear? If you don’t understand the mean-
ing of the symbols U or N or the overbar, review the discussion on page 4.

To prove this theorem, we must show that the two sets AU B and AN B are
equal. Recall that we may prove that two sets are equal by showing that every
member of one set also is a member of the other and vice versa. Before looking
at the following proof, consider a few examples and then try to prove it yourself.

PROOF This theorem states that two sets, AU B and A N B, are equal. We
prove this assertion by showing that every element of one also is an element of
the other and vice versa.

Suppose that x is an element of AU B. Then x is not in A U B from the
definition of the complement of a set. Therefore, x is notin A and z is not in B,
from the definition of the union of two sets. In other words, z is in A and z is in
B. Hence the definition of the intersection of two sets shows that z is in AN B.

For the other direction, suppose that = is in A N B. Then z is in both A and
B. Therefore, z is not in A and z is not in B, and thus not in the union of
these two sets. Hence z is in the complement of the union of these sets; in other
words, z is in A U B, which completes the proof of the theorem.

Let’s now prove the statement in Example 0.19.

THEOREM 0.2] ......................................... \ammmmmessssrreeEsssmseeessssmREERssRssmsmsesnreenERRan

For every graph G, the sum of the degrees of all the nodes in G is an even
number.

PROOF Every edge in G is connected to two nodes. Each edge contributes 1
to the degree of each node to which it is connected. Therefore, each edge con-
tributes 2 to the sum of the degrees of all the nodes. Hence, if G contains e
edges, then the sum of the degrees of all the nodes of G is 2¢, which is an even
number.
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0.4

TYPES OF PROOF

Several types of arguments arise frequently in mathematical proofs. Here, we
describe a few that often occur in the theory of computation. Note that a proof
may contain more than one type of argument because the proof may contain
within it several different subproofs.

PROOF BY CONSTRUCTION

Many theorems state that a particular type of object exists. One way to prove
such a theorem is by demonstrating how to construct the object. This technique
is a proof by construction.

Let’s use a proof by construction to prove the following theorem. We define
a graph to be k-regular if every node in the graph has degree k.

THEOREM 0.22 s, . NNRRRSRERRNEEESEERRRRREEEESRRRRREENSSRRERRRRRRREERRE

For each even number n greater than 2, there exists a 3-regular graph with n
nodes.

PROOF Letn be an even number greater than 2. Construct graph G = (V, E)
with n nodes as follows. The set of nodes of Gis V = {0,1,...,n — 1}, and the
set of edges of G is the set

E={{i,i+1}| for0<i<n-2}U{{n—1,0}}
U {{i,i+n/2}| for0<i<n/2—1}.

Picture the nodes of this graph written consecutively around the circumference
of a circle. In that case, the edges described in the top line of E go between
adjacent pairs around the circle. The edges described in the bottom line of £ go
between nodes on opposite sides of the circle. This mental picture clearly shows
that every node in G has degree 3.

PROOF BY CONTRADICTION

In one common form of argument for proving a theorem, we assume that the
theorem is false and then show that this assumption leads to an obviously false
consequence, called a contradiction. We use this type of reasoning frequently in
everyday life, as in the following example.
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EXAMPLE .23 v . . (R

Jack sees Jill, who has just come in from outdoors. On observing that she is
completely dry, he knows that it is not raining. His “proof” that it is not raining
is that #f it were raining (the assumption that the statement is false), 7/l would be
wet (the obviously false consequence). Therefore, it must not be raining.

Next, let’s prove by contradiction that the square root of 2 is an irrational
number. A number is rational if it is a fraction 7, where m and n are integers;
in other words, a rational number is the ratio of integers m and n. For example,
2 obviously is a rational number. A number is érrational if it is not rational.

THEOREM 0.24 ......................................... e ERRAEEEEERRSEEREERRRRREEERRRRAEREEERRSERRRERRRSERRRRRSE

V/2 is irrational.

PROOF First, we assume for the purpose of later obtaining a contradiction
that v/2 is rational. Thus

Va="1

n

where m and n are integers. If both m and n are divisible by the same integer

greater than 1, divide both by the largest such integer. Doing so doesn’t change

the value of the fraction. Now, at least one of m and n must be an odd number.
We multiply both sides of the equation by n and obtain

We square both sides and obtain
2n? = m?,

Because m? is 2 times the integer n?, we know that m? is even. Therefore, m,
too, is even, as the square of an odd number always is odd. So we can write
m = 2k for some integer k. Then, substituting 2k for m, we get

2n? = (2k)?
= 4k2.
Dividing both sides by 2, we obtain
n? = 2k?.

But this result shows that n? is even and hence that n is even. Thus we have
established that both m and n are even. But we had earlier reduced m and n so
that they were 7ot both even—a contradiction.

PROOF BY INDUCTION

Proof by induction is an advanced method used to show that all elements of
an infinite set have a specified property. For example, we may use a proof by
induction to show that an arithmetic expression computes a desired quantity for
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every assignment to its variables, or that a program works correctly at all steps
or for all inputs.

To illustrate how proof by induction works, let’s take the infinite set to be the
natural numbers, N' = {1,2,3, ...}, and say that the property is called P. Our
goal is to prove that P(k) is true for each natural number £. In other words, we
want to prove that P(1) is true, as well as P(2), P(3), P(4), and so on.

Every proof by induction consists of two parts, the basis and the induction
step. Each part is an individual proof on its own. The basis proves that P(1) is
true. The induction step proves that for each ¢ > 1, if P() is true, then so is
P(i+1).

When we have proven both of these parts, the desired result follows—namely,
that P(i) is true for each . Why? First, we know that P(1) is true because the
basis alone proves it. Second, we know that P(2) is true because the induction
step proves that if P(1) is true then P(2) is true, and we already know that P(1)
is true. Third, we know that P(3) is true because the induction step proves that
if P(2) is true then P(3) is true, and we already know that P(2) is true. This
process continues for all natural numbers, showing that P(4) is true, P(5) is
true, and so on.

Once you understand the preceding paragraph, you can easily understand
variations and generalizations of the same idea. For example, the basis doesn’t
necessarily need to start with 1; it may start with any value b. In that case, the
induction proof shows that P (k) is true for every k that is at least b.

In the induction step, the assumption that P(7) is true is called the induction
bypotbesis. Sometimes having the stronger induction hypothesis that P(j) is
true for every j < i is useful. The induction proof still works because when we
want to prove that P (i + 1) is true, we have already proved that P(j) is true for
every j < 1.

The format for writing down a proof by induction is as follows.

Basis: Prove that P(1) is true.

Induction step: For each i > 1, assume that P(i) is true and use this assumption
to show that P(i + 1) is true.

Now, let’s prove by induction the correctness of the formula used to calculate
the size of monthly payments of home mortgages. When buying a home, many
people borrow some of the money needed for the purchase and repay this loan
over a certain number of years. Typically, the terms of such repayments stipulate
that a fixed amount of money is paid each month to cover the interest, as well as
part of the original sum, so that the total is repaid in 30 years. The formula for
calculating the size of the monthly payments is shrouded in mystery, but actually
is quite simple. It touches many people’s lives, so you should find it interesting.
We use induction to prove that it works, making it a good illustration of that
technique.
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First, we set up the names and meanings of several variables. Let P be the
principal, the amount of the original loan. Let I > 0 be the yearly interest rate of
the loan, where I = 0.06 indicates a 6% rate of interest. Let Y be the monthly
payment. For convenience, we use I to define another variable M, the monthly
multiplier. It is the rate at which the loan changes each month because of the
interest on it. Following standard banking practice, the monthly interest rate is
one-twelfth of the annual rate so M = 1+ I/12, and interest is paid monthly
(monthly compounding).

"Two things happen each month. First, the amount of the loan tends to in-
crease because of the monthly multiplier. Second, the amount tends to decrease
because of the monthly payment. Let P; be the amount of the loan outstand-
ing after the ¢th month. Then Py = P is the amount of the original loan,
P, = M P, —Y is the amount of the loan after one month, P, = M P, — Y is
the amount of the loan after two months, and so on. Now we are ready to state
and prove a theorem by induction on ¢ that gives a formula for the value of P;.

THEOREM 0.25 ..................................... .

For eacht > 0,

Mt —1
Po=PM! -V |[—).
¢ <M—1)

PROOF
Basis: Prove that the formula is true for ¢t = 0. If t = 0, then the formula states
that
MO -1
PO:PMO—Y(m)
We can simplify the right-hand side by observing that MY = 1. Thus we get
Py =P,

which holds because we have defined P, to be P. Therefore, we have proved
that the basis of the induction is true.

Induction step: For each k > 0, assume that the formula is true for ¢ = k and
show that it is true for ¢ = k + 1. The induction hypothesis states that

MF—1
P, =PM"—Y [ ——F).
, (M—l)

Our objective is to prove that

k
Pip1 = PMF vy (H) )

M—-1
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We do so with the following steps. First, from the definition of Pyy; from
Py, we know that

Poyr = PM — Y.

Therefore, using the induction hypothesis to calculate P,

ME—1
P.,= |PMF-Y|— )| M-Y.

Multiplying through by M and rewriting Y yields

k+1 _ -1
Py = PMEY vy (U) Ve (M_>

M—1 M—1
Mk+L 1
= PMF! Yy | ————

Thus the formula is correct for ¢ = k + 1, which proves the theorem.

Problem 0.15 asks you to use the preceding formula to calculate actual mort-
gage payments.

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain. Write a short informal English description of each set.

a. {1,3,5,7,...}

b. {...,—4,-2,0,2,4,...}

c. {n|n = 2m for some m in N'}

d. {n|n = 2m for some m in N, and n = 3k for some k in N'}
e. {w|wisa string of 0s and 1s and w equals the reverse of w}

-

. {n|nisanintegerand n = n + 1}

0.2 Write formal descriptions of the following sets.

The set containing the numbers 1, 10, and 100

The set containing all integers that are greater than 5
The set containing all natural numbers that are less than 5

a.
b.

c.

d. The set containing the string aba

e. The set containing the empty string
f.

The set containing nothing at all
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