CS420
Finite Automata and
Regular Languages

Wed Jan 27, 2021
UMass Boston Computer Science

Programming in Linux: Basics
(15 minute crash course)

Code Demo

* stdin, stdout
« command line
« command line scripts

* MakefileS

A Makefile

Targets

(see hw for
names)

comment

rackef hello. rkt

racket aiphabet.rkt

racket pﬁwerset.rkt

racket xml. rkt

Grader Preinstalled langs:
Python, Java, C, C++, JS, Racket

Commands to run
(these files better exist)

HW 0 Questions?

Last time: The Theory of Computation ...

 Creates and studies mathematical models of computers

* In order to:
« Make predictions about computer programs
« Explore the limits of computation

Last time: Levels of Computational Power

grammars (generators) automata (acceptors)

recurSively Turing * more complex
. * more powerful
enumerabl€ maChlne « less restricted
context- linear bounded ‘ |
sensitive automaton
context- push-down
free automaton
regular finite

2 AWe’'ll start here ‘

LU

gramimar automaton

Finite Automata
or
Deterministic Finite Automata (DFA)

State Machine
Finite State Machine (FSM)

Finite Automata: A computational model for ...

D mon |
‘ 3
- / - "_,

w

A Microwave Finite Automata

Inputs change states
(possibly)

press stop press start

é press start é
press stop

States

Finite Automata: Not Just for Microwaves

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal
state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Finite Automata:

acommon—
programming pattern

== |

13

Video Games Love Finite Automata

15

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

16

Model-view-controller (MVC) is a FSM

(MODEL $\
States
UPDATES MANIPULATES Inputs Change StateS
VIEW CONTROLLER
: N5 /
The View Draws states R &
N\ /

A Finite Automata 1s a Computer!

« Avery limited computer with finite memory
* Memory = states

« In this class, we’ll formally study automata as:
 State diagrams
 Formal mathematical model
e Code simulations of the mathematical model

Finite Automata state diagram

Accept State
1
1 0
O 0=
Start State " " Inputs cause state transitions

States

Finite Automata: The Formal Definition

- 45 components
DEFINITION 1.5

A finite automaton is a S-tuple (Q, X, 9, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q x X—(Q is the transition function,
4. qo € Q 1s the start state, and

5. F C Q is the set of accept states.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alpbabet,

3. 0: Q X ¥— () is the transition function,
4. qo € Q is the start state, and

5. F C @ is the set of accept states.

Example: as state diagram

DEFINITION 1.5 Example: as formal description

A finite automaton is ¢ 5-tuple (Q, X, 6, qo, F'). where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, Phey 20y = {Oa]—}a S Btracistf
- . .- et notation
5. F C @ is the set of accept states.
0 1
0 di1 | 91 g2
q2 | 43 g2
1 43 | 92 {42,
q1 .
4. ¢ 1s the start state, and
q y

5. F = {QQ}.

Example: as state diagram

DEFINITION 1.5 Example: as formal description

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. () is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql » 42, 43 }’ - -
3. 0: Q X ¥— () is the transition function, Phey 20y = {Oa]—}a Possible Inputs
4. qo € Q is the start state, and 3. §1s described as
5. F C @ is the set of accept states.
0] 1
0 d1 | 91 @2
q2 | 43 @2
1 a3 | 92 42,
q1 :
4. ¢ 1s the start state, and
q y

5. F = {QQ}.

Example: as state diagram

Example: as formal description

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, di, F), where

1. @ is a finite set called the states, 1 _
2. X is a finite set called the alpbabet,) Q {Ql 925 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. qo € Q) is the start state, and : 4
i € QB MR QT 51725, £ 3. ¢ is described as [wangthis is next
5. F C @ is the set of accept states. i .
0 1 Input symbol
0 o d1 | 91 42 -
“If in this “Then go to
state” @219 92 this state”
1 43 | 92 g2,
q1 :
4. ¢ 1s the start state, and
5. F = {QQ}.

Example: as state diagram

DEFINITION 1.5 Example: as formal description

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2. X = {Oa]—}a
4. qo € Q) is the start state, and 3. §1s described as
5. F C @ is the set of accept states.
o) 1
0 q1 [91 42
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Example: as state diagram

DEFINITION 1.5 Example: as formal description

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. qo € Q is the start state, and 3. §1s described as
5. F C @ is the set of accept states.
o) 1
0 q1 [91 42
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Example: as state diagram

Precise Terminology 1s Important

 Currently, these terms are all equivalent:
» Finite State Machine (FSM), State Machine
e Finite Automaton, Automaton
* Deterministic Finite Automata (DFA)

They describe a specific kind of FSM, defined in Definition 1.5

Eventually, we'll learn about many different variations of finite automata:
* Deterministic Finite Automata (DFA)
* Non-Deterministic Finite Automata (NFA)
e Generalized Non-Deterministic Finite Automata (GNFA)

Then, these terms will generally describe the class of machines studied in Ch 1
» Finite State Machine (FSM), State Machine
* Finite Automaton, Automaton

But all these machines are related; they are equivalent in “power”

‘Running” an FSM “Program” (JFLAP demo)

|
 FSM: }o 1 e

* Program: “1101"

‘he Computation Model

Informally Formally (i.e., mathematically)
« Computer = some finite automata <+ M = (Q,%,0,q. F)

* Program = input string of chars * W = WiwWz - Wn

e Start In “start state” * To = qo

* 1 char at a time, follow transition * §(r;, wis1) =741, fori=0,....,n—1
table to change states
e Result =

« “Accept” If last state is “Accept” state
* “Reject” otherwise

M accepts w it
sequence of states g, 71, ..., T, In () exists

with r, € F

Terminology

* M accepts w

- M recognizes language A
it A = {w| M accepts w}

* A language is called a regular language

if some finite automaton recognizes it.

Proving that a language I1s regular

Kinds of Mathematical Proof

 Proof by construction
« Construct the mathematical object in question

 Proof by contradiction

 Proof by induction

Proving that a language I1s regular

* (Usually) requires creating a FSM

A language is called a regular language

if some finite automaton recognizes it.

Designing Finite Automata

« States = the machine’s memory!
 Finite amount of memory: must be allocated in advance
* Think about what information must be remembered.

« Example: machine accepts strings with even number of 0s
« Two states: 1) seen even number of 0s, 2) seen odd number of 0s

 Input may only be read once

« Must decide accept/reject after that

INn-class exercise 1

« Come up with a formal description of the following machine:

DEFINITION 1.5
A finite automaton is a 5-tuple (Q), X, 6, qo, F'), where

1.) is a finite set called the states,

2. Y is a finite set called the alpbabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q is the start state, and

5. F' C Q is the set of accept states.

In-class exercise 2

- Design machine M that recognizes: {w |w has exactly three 1's}

e Where 2= {0, 1},
DEFINITION 1.5

e Remember: A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. @ is a finite set called the states,

2. . 1s a finite set called the alphabet,

3.0: Q x X—Q 1s the transition function,
4. qo € @ is the start state, and

5. F C Q 1s the set of accept states.

Check-in Quiz 1/27

See Gradescope

