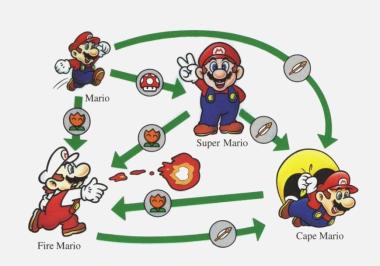
CS420 Finite Automata and Regular Languages

Wed Jan 27, 2021

UMass Boston Computer Science



Programming in Linux: Basics (15 minute crash course)

Code Demo

• stdin, stdout

command line

command line scripts

• Makefile**S**

A Makefile

Grader Preinstalled langs: comment Python, Java, C, C++, JS, Racket # install your language here (you can probably setup: run-hw0-stdio: racket hello.rkt # this line must start with a tab run-hw0-alphabet: **Targets** racket alphabet.rkt (see hw for Commands to run names) run-hw0-powerset: (these files better exist) racket powerset.rkt run-hw0-xml: racket xml.rkt⊭

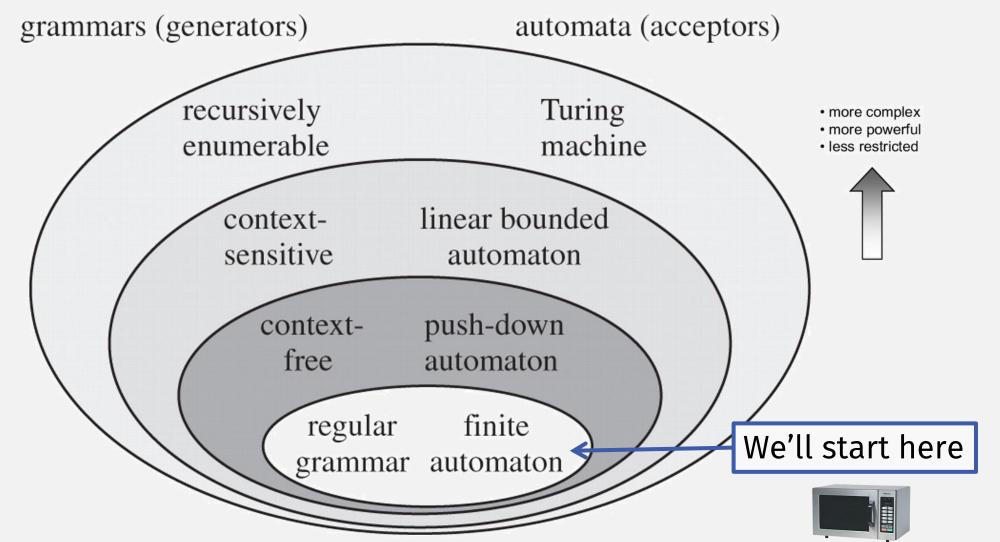
HW 0 Questions?

Last time: The Theory of Computation ...

Creates and studies mathematical models of computers

- In order to:
 - Make predictions about computer programs
 - Explore the limits of computation

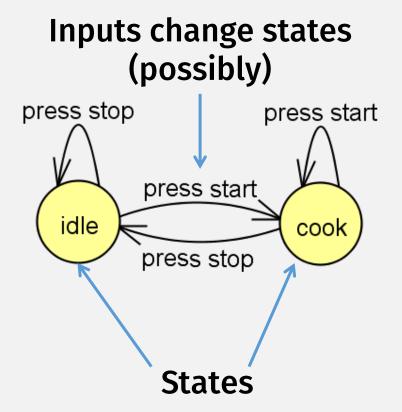
Last time: Levels of Computational Power



Finite Automata Or Deterministic Finite Automata (DFA) State Machine Finite State Machine (FSM)

Finite Automata: A computational model for ...

A Microwave Finite Automata



Finite Automata: Not Just for Microwaves

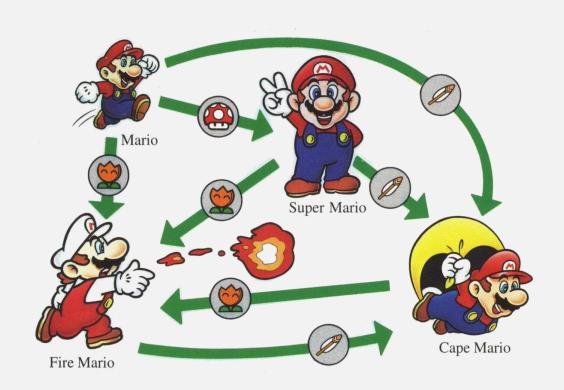
Finite Automata: a common — programming pattern

State pattern

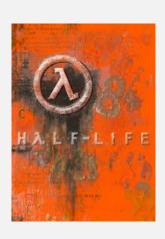
From Wikipedia, the free encyclopedia

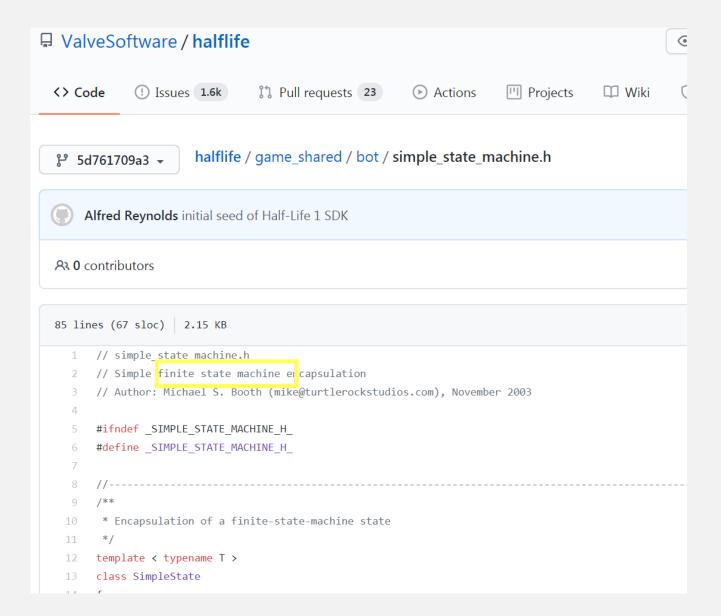
The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Video Games Love Finite Automata

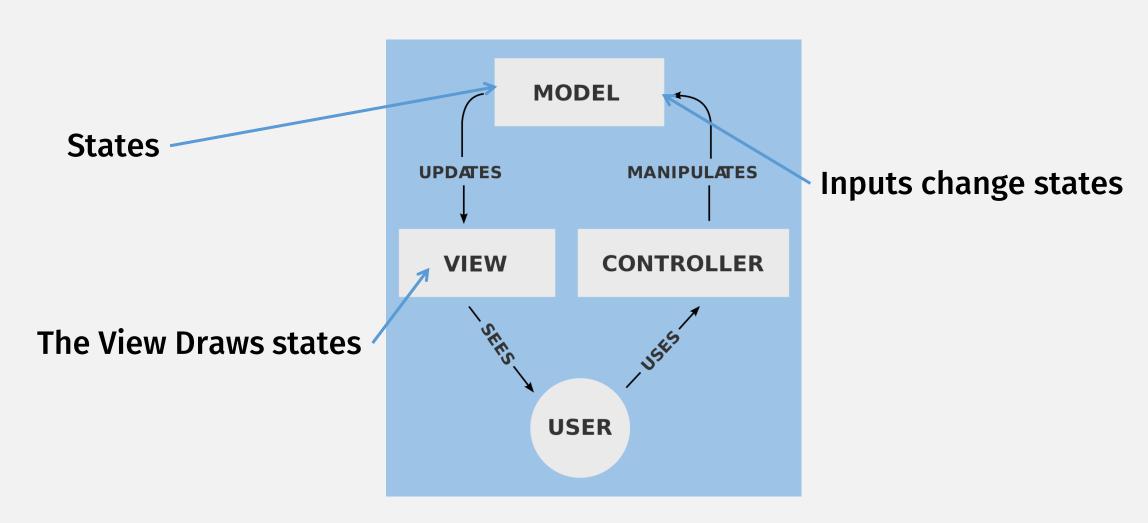


Finite Automata in Video Games





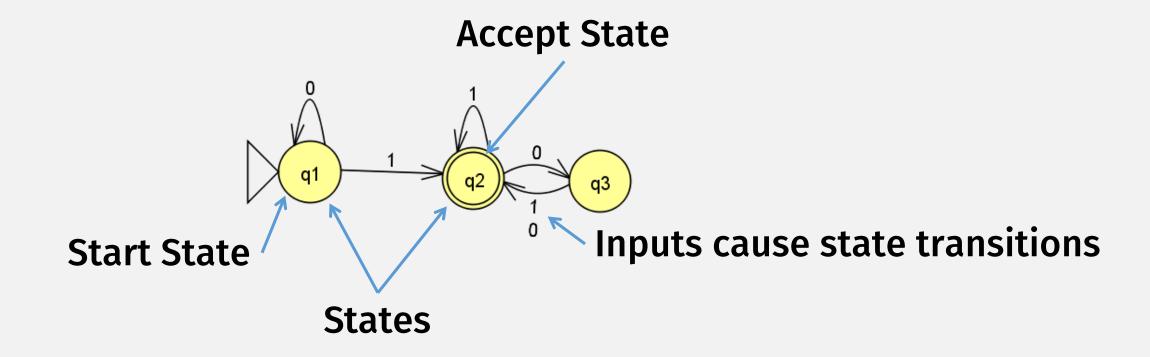
Model-view-controller (MVC) is a FSM



A Finite Automata is a Computer!

- A very limited computer with <u>finite</u> memory
 - Memory = states
- In this class, we'll formally study automata as:
 - State diagrams
 - Formal mathematical model
 - Code simulations of the mathematical model

Finite Automata state diagram



Finite Automata: The Formal Definition

DEFINITION 1.5

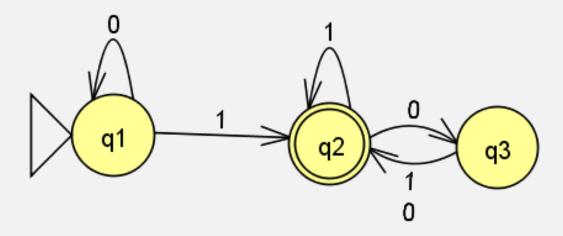
5 components

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

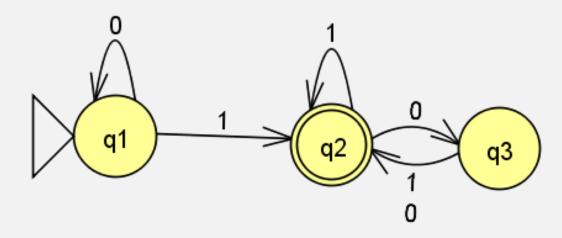
- **1.** Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



Example: as state diagram

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



Example: as state diagram

Example: as formal description

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

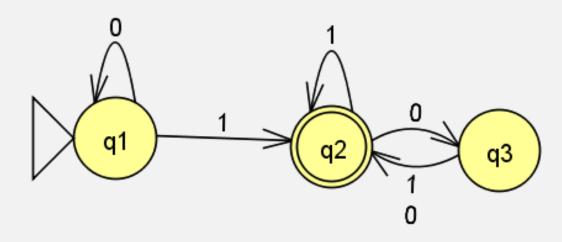
Braces =
Set notation
(no duplicates)

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

- **4.** q_1 is the start state, and
- 5. $F = \{q_2\}.$

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



Example: as state diagram

Example: as formal description

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\}$$
, Possible inputs

3. δ is described as

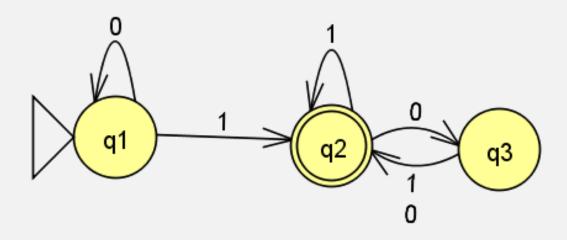
	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	$q_2,$

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the **states**,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



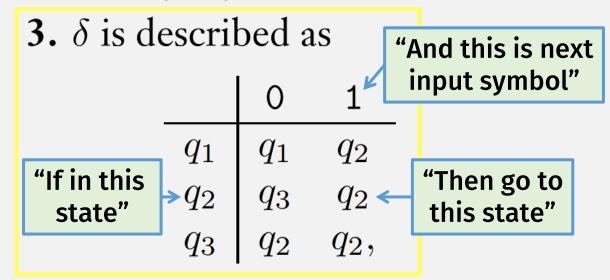
Example: as state diagram

Example: as formal description

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

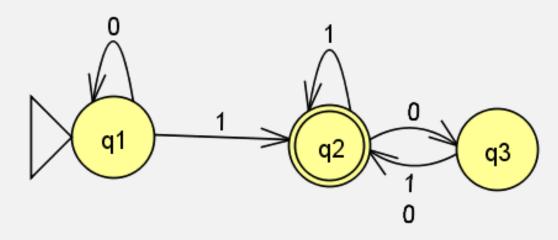
2.
$$\Sigma = \{0,1\},$$



- **4.** q_1 is the start state, and
- 5. $F = \{q_2\}.$

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



Example: as state diagram

Example: as formal description

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

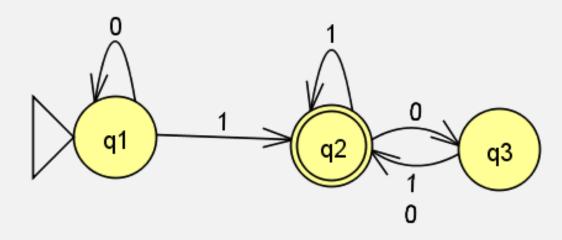
	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	$q_2,$

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



Example: as state diagram

Example: as formal description

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	$q_2,$

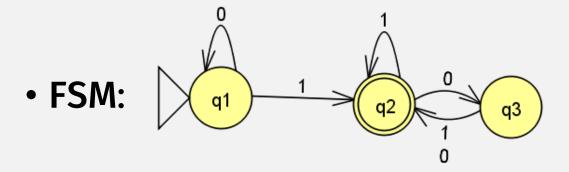
4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

Precise Terminology is Important

- **Currently**, these terms are all equivalent:
 - Finite State Machine (FSM), State Machine
 - Finite Automaton, Automaton
 - Deterministic Finite Automata (DFA)
- They describe a specific kind of FSM, defined in Definition 1.5
- **Eventually**, we'll learn about many different variations of finite automata:
 - Deterministic Finite Automata (DFA)
 - Non-Deterministic Finite Automata (NFA)
 - Generalized Non-Deterministic Finite Automata (GNFA)
- **Then**, these terms will generally describe the <u>class</u> of machines studied in Ch 1
 - Finite State Machine (FSM), State Machine
 - Finite Automaton, Automaton
- But all these machines are related; they are equivalent in "power"

"Running" an FSM "Program" (JFLAP demo)



• Program: "1101"

The Computation Model

Informally

- <u>Computer</u> = some finite automata
- <u>Program</u> = input string of chars
- Start in "start state"
- 1 char at a time, follow <u>transition</u> table to change states
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$
- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists

with
$$r_n \in F$$

Terminology

- M accepts w
- M recognizes language A if $A = \{w | M \text{ accepts } w\}$
- A language is called a *regular language* if some finite automaton recognizes it.

Proving that a language is regular

Kinds of Mathematical Proof

- Proof by construction
 - Construct the mathematical object in question
- Proof by contradiction
- Proof by induction

Proving that a language is regular

• (Usually) requires creating a FSM

A language is called a *regular language* if some finite automaton recognizes it.

Designing Finite Automata

- States = the machine's memory!
 - Finite amount of memory: must be allocated in advance
 - Think about what information must be remembered.

- Example: machine accepts strings with even number of 0s
 - Two states: 1) seen even number of 0s, 2) seen odd number of 0s
- Input may only be read once
- Must decide accept/reject after that

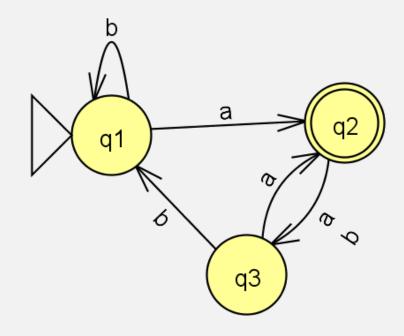
In-class exercise 1

• Come up with a formal description of the following machine:

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.



In-class exercise 2

• Design machine M that recognizes: {w |w has exactly three 1's}

• Where $\Sigma = \{0, 1\},$

DEFINITION 1.5

• Remember:

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Check-in Quiz 1/27

See Gradescope