| need a hand guys, does
anyone have special skills in
regular expressions?

Me! | fell in them
when | was a kid

=

Okay, still not
matching...

Why don't you
use #, wouldn't it
-\ be better?

Try it with
~[0-9] here? t_j‘

What's that
syntax coloring?
It's texvible wou

Not a chance it'll
work if you don't
=) escape the dot...

Your pattem
sucks, | found an
easier one here

CommitStrip.com

Regular Expressions
and Inductive Proofs

Wed Feb 17, 2021
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Logistics
« HW2 solutions posted

« HW3 due Sunday 2/21 11:59pm EST
« Mostly a repeat of HW1-2 tasks, but for NFAs
* Note: last question is non-coding

« Coding in this class:
« Forces you to be precise

 Reinforces that we are studying computation
« and meta-computation!
« Proof by construction = algorithm = computation by a more powerful computer!
* (see next slide)

« As computational models get complex, we will transition to on-paper proofs

e Questions?



Review: HW2, Intersection Problem

Password Requirements

- State machine
» Passwords must have a minimum length of ten (10) characters - but more is better!

» Passwords must include at least 3 different types of characters:
» upper-case letters (A-Z) <— State machine

State machine ——7lower-case letters (a-z)

» symbols or special characters (%, &, *, $, etc.) <-{ State machine

» numbers (0-9)«— State machine
» Passwords cannot contain all or part of your email address<— State machine

» Passwords cannot be FE-USE‘C](— State maChine

Combination of these machines is also a state machine.

But what kind of computer is needed to perform the combining?




Review: HW2, Intersection Problem

def DFA Intersection(DFA1,DFA2):
DFA = {'states':set(),'sigma':set(), 'delta":{}, 'start':"", "accepts':set()}
DFA[ 'states'] = set(it.product(DFA1['states'],DFA2[ 'states']))
DFA[ 'sigma'] = set.union(DFA1l['sigma'],DFA2['sigma'])

DFA[ "start’]

(DFAL[ 'start'],DFA2[ "start'])

A‘WHDFGIOOVVGFfUl DFA[ 'accepts'] = set(it.product(DFALl['accepts'],DFA2[ 'accepts']))
“computer” needed to
combine state \'FDP state in DFA['states']:
machines DFA[ "delta'][state] = {}

for string in DFA['sigma']:
DFA[ 'delta'][state][string] = (DFA1['delta'][state[@]][string],DFA2[ "delta’][state[1]][string])

return DFA4

State machines ?Ml_I_MZ DFA_Intersection(M1,M2) # M1 and M2 intersection
M3 I M4 = DFA Intersection(M3,M4) # M3 and M4 intersection

Combined | _Spra Final = DFA Intersection(M1 I M2,M3_I M4) # Final DFA i.e. intersection of M1,M2,M3,Md
state machine

# String check condition.

_____;f{Pun(DFﬂ;Finaljsthing]):

sys.stdout.write("valid")

Password
checked by
state machine




Flashback: Levels of Computational Power

grammars (generators) automata (acceptors)

recursively

Construction of
password validation
machine from smaller
state machine???

Turing
machine

* more complex
* more powerful
* less restricted

tinear bounded
automaton

context- push-down
free automaton

@I ﬁnh < We'll start here
Password ‘dmmdr dmomyy/

validation —




Review: HW2, Intersection Problem: A different answer

def inrersection(dfal, dfa2, dfa3, dfa4, password):

tlagl = @
flag2 = @
tlag3d = @
flaga = ©

Password checking not | ‘
R /-Fc:r* char in password:
O y if (char in dfal.alphabet): flagl -

“ ”n :
grammars (generators) (I’IO call to “run fUI‘lCtIOI‘I) elif (char in dfa2.alphabet): flag2
elif (char in dfa3.alphabet): flag3
len(password)

[
[y

Il
[

« more complex i
* more powerful

recursively

enumerable machine - less resfricted j = len(dfad.alphabet)
i if (1 >= j): flaga =1
context- linear bounded H 1 (1 1) 96
sensitive automaton if (flagl and flag2 and flag3 and flag4):

print(“valid")

context- push-down else:

free automaton

print("invalid")

regular finite
grammar automaton

138



Last time: Regular Expressions

 Regular expressions are widely used by programmers
» But they can only match regular languages

 So to properly use reg. exps, you must know what is/isn’'t a regular lang!

RegEx match open tags except XHTML self-contained tags

Asked 11 years, 3 months ago  Active 3 months ago  Viewed 3.1m times

| need to match all of these opening tags:

1647 <

<a href="foo">»

But not these:

<br />
<hr class="foo" />

You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a
A413 tool that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions
here so many times before, the use of regex will not allow you to consume HTML. Regular
expressions are a tool that is insufficientlv sophisticated to understand the constructs emploved
V by HTML. HTML is not a regular language and hence cannot be parsed by regular expressions. 139



Last time: Big Picture Road Map

* In this course, we must formally prove the equivalence:
« Regular Languages < Regular Expressions ¢

* To do so, we need to prove these ops are closed under reg langs:
« Union (done!)
« Concatentation (done!)
* Kleene star (done!)

* To prove closure properties, we using NFAs:
* Need NFA <& DFA equivalence theorem (done!)



By the end of class today ...

« We'll have proven that all these are equivalent:
« Deterministic Finite Automaton (DFA)
e Non-deterministic Finite Automaton (NFA)
 Generalized Non-deterministic Finite Automaton (GNFA)
« Regular Expressions

* They all represent a regular language!



Regular Expressions, Formal Definition

Remember:
A Regular Expression represents a
(regular) language, i.e., a set of strings!

DEFINITION 1.52
Say that R 1s a regular expression it R 1s

1. a for some a in the alphabet Y3, | (Alang containing a) length-1 string
. €, (A lang containing) the empty string
. (Z), The empty set (i.e., a lang containing no strings)

R; U Rs), where Ry and Ry are regular expressions,

Concat of langs

2

3
Union of langs 4. (

5. (R1 o R2), where R; and Ry are regular expressions, or

6. (

Star of langs R}), where R; is a regular expression.



Regular Expression: Concrete Example

Entire reg expr: represents lang whose
strings are strings from these langs
concat’ed together (implicit concat op)

the lang {“0”, "1"} (O L 1)0* the lang {*”, 70", “00”, ...}

the lang {“0”} the lang {“1”}

» Operator Precedence:
* Parens
e Star
 Concat (sometimes implicit)
e Union



Thm: A lang I1s regular iff some reg expr describes it

« => |If a language Is regular, it is described by a reg expr

« <=|f a language Is described by a reg expr, it Is regular
* Easy! How to show that a
« For a given regexp, construct the equiv NFA! lang is regular?

* See Lemma 1.55 Construct DFA or NFA!



Lemma 1.55: Regexp -> NFA

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, —>©—a>©

)

)
0, -~

1 U Rs), where Ry and R; are regular expressions,

(

R1 0 Ry), where K el : ' ' r
(1 0 J2), where B ot ctions from before!
(RT), where Rl IS d 1cguLar capireod1ULL.

2.
3.
4.
5.
6.



Thm: A lang I1s regular iff some reg expr describes it

« => |If a language Is regular, it is described by a reg expr
« Hard!
« Need to convert DFA or NFA to Regular Expression
* Need something new: a GNFA

« <= |f a language is described by a reg expr, it is regular
* Easy!
- Construct the NFA! (Done)



Generalized NFAs (GNFASs)

ab U ba

Want to convert

* GNFA = NFA with regular expression transitions GNFAs to Reg Exprs



GNFA->Regexp function

« On GNFA input G:

* If G has 2 states, return the regular expression transition, e.g.:
Equivalent Regular expression

@ (R) (R)* (Ry) U (R GNFA
* Else:

« “Rip out” one state, and “repair”, to get G’ (has one less state than G)
« Recursively call GNFA->Regexp(G’)

A recursive (function) definition!




Recursive (Inductive) Definitions

» (at least) two parts:

e Base case

e Inductive case
» Self-reference must be “smaller” than the whole

« Example: factorial function

factorial(n):

n

n

1

tfactorial(n-1)

What's the base case?

Self-reference smaller than the whole

149



GNFA->Regexp function

« On GNFA input G:
« If G has 2 states, return the regular expression transition, e.g.:

Base case

Inductive case

Equivalent Regular expression

@ (R) (R)* (Ry) U (R GNFA

* Else:
« “Rip out” one state, and “repair”, to get G’ (has one less state than G)
 Recursively call GNFA->Regexp(G’) Recursive call
is “smaller”

A recursive (function) definition!




GNFA->Regexp function: “Rip/repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
R

after

To convert GNFA to reg expr:
“rip out” states, and then “repair”,
before until only 2 states remain



GNFA->Regexp function: “Rip/repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before



GNFA->Regexp function: “Rip/repair” step

After: still two “paths” from g; to g;
1. Not through q,,

1y

Rl @ RS
It

before

2. Through g,

T~

(121) (Ro)™ (123)

0

after

U 1:R4)



GNFA->Regexp function: “Rip/repair” step

1y

q;

Rl @ RS
R

before

Before:

(121) (Ro)™ (123)

after

- path through g,;, has 3 transitions

- One s self loop

U (Ry)



GNFA->Regexp function: “Rip/repair” step

After:

- Self loop becomes star operation
o o - Others are concat’ed together

Rl @
R

2

before

This is “informal”
correctness

path through q,;, has 3 transitions
One is self loop

(1)) (Ro)™ (R3)|U (Ry)
Q@ ) )
I3
concat after
Star operation
Before:

This course requires
formal correctness,
I.e., proof




Need to prove GNFA->Regexp “correct”

« Where “correct” means:

LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) )

* I.e., GNFA->Regexp must not change the language!



Kinds of Mathematical Proof

 Proof by construction

* Proof by contradiction

* Proof by induction {z=m=

» Use to prove properties of recursive (inductive) defs or functions




Proof by Induction

 To prove that a property P is true for a thing x
* First, prove that P is true for the base case of x (usually easy)

* Then, prove the induction step:
 Assume the induction hypothesis (IH):
* P(x)is true, for some x that smaller than x
« and use it to prove P(x)
« The kRey Is x must be smaller than x

smaller

smaller

« Why can we assume IH Is true???
« Because we can always start at base case,
« Then use it to prove for slightly larger case,
« Then use that to prove for slightly larger case ...



Need to prove GNFA->Regexp “correct”

* Where “correct” means: This is the “thing” we want to prove it for

LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) )

This is the property we want to prove

* I.e., GNFA->Regexp must not change the language!



GNFA->Regexp IS correct

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

» Proof (by induction on size of G):

LANGOF (G )

LANGOF ( GNFA->Regexp (G ) )




LANGOF (G )

GNFA->Regexp IS correct

LANGOF ( GNFA->Regexp (G ) )

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

* Proof (by induction on size of G): ) (o
>Base case: G has 2 states @ @
* LANGOF ( G) = LANGOF ( GNFA->Regexp (G) ) is true!




LANGOF (G )

GNFA->Regexp IS correct

LANGOF ( GNFA->Regexp (G ) )

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

* Proof (by induction on size of G): ) (R (R0 (i
« Base case: G has 2 states @ @
* LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) ) Is true!

»IH: Assume LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G’ ) )
« For some G’ with n-1 states




LANGOF (G )

GNFA->Regexp IS correct

LANGOF ( GNFA->Regexp (G ) )

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

* Proof (by induction on size of G): B (R (R ()
« Base case: G has 2 states @ @
* LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) ) Is true!

* IH: Assume LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G’ ) )
« For some G’ with n-1 states

»Induction Step: Prove it's true for G with n states

165



LANGOF (G )

GNFA->Regexp IS correct

LANGOF ( GNFA->Regexp (G ) )

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

* Proof (by induction on size of G): .
» Base case: G has 2 states @ @
* LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) ) Is true!
* [H: Assume LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G ) )
« For some G’ with n-1 states
»Induction Step: Prove it's true for G with n states

« After “rip” step, we have exactly a GNFA with n-1 states
« And we know LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G’ ) ) from the IH!

166



LANGOF (G )

GNFA->Regexp IS correct

LANGOF ( GNFA->Regexp (G ) )

Def: GNFA->Regexp: input G is a GNFA with n states:
If n = 2: return the reg expr on the transition
Else (G has n > 2 states):

“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

* Proof (by induction on size of G): .
» Base case: G has 2 states @ @
* LANGOF ( G ) = LANGOF ( GNFA->Regexp (G ) ) Is true!
* [H: Assume LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G ) )
 For some G’ with n-1 states
= Induction Step: Prove it's true for G with n states
« After “rip” step, we have exactly a GNFA with n-1 states

« And we know LANGOF ( G’ ) = LANGOF ( GNFA->Regexp (G’ ) ) from the IH!
»To go from G to G”: need to prove correctness of “rip” step 167




GNFA->Regexp: “rip” step correctness

These are equivalent

R, @(Ro (Ro)* (Ry|U (Ry) e
() () \J

after

* Must prove:

2

before

 Every string accepted before, is accepted after

Ry H3
e 2 cases:
* Accepted string does not go through g, N
R - Acceptance unchanged (both use R, transition part)

> String goes through g,
| Acceptance unchanged?

Mostly done this already!

Just need to state more formally



Thm: A lang I1s regular iff some reg expr describes it

« => |If a language Is regular, it is described by a reg expr
« Hard!
« Need to convert DFA or NFA to Regular Expression
 Use GNFA->Regexp to convert GNFA to regular expression! (Done!)

« <= |f a language is described by a reg expr, it is regular
* Easy!
- Construct the NFA! (Done)

Now we may confidently use regular
expressions to represent regular langs.



Check-in Quiz 10/17

On gradescope

End of Class Survey 10/17

See course website




