CS420

Context-Free Languages (CFLs)

Monday, March 1, 2021

grammars (generators) automata (acceptors)

recursively Turing
enumerable machine

context- linear bounded
sensitive automaton

push-down
automaton

regular finite
grammar automaton

* more complex
+ more powerful
« less restricted

i

Announcements
e HW4 In

* HW5 out
e Due Sunday 3/7/2021 11:59pm EST

e Reminder: HW submissions must include README files

« Cite your sources and collaborators
» This is how (computer) scientists work

« Answers must be written in your own words

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be

L a St T i m e o divided into three pieces, s = zyz, satisfying the following conditions:
y 1. for eachi > 0, zy'z € A,

2. |y| > 0, and

3. [zy| <p.

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

« If this language is not regular, then what is 1t???

- Maybe? ... a context-free language (CFL)?

* (This language sort of resembles HTML/XML)

A Context-Free Grammar (CFG)

terminals
Top variable is
Start variable A — 0A1
A — B Substitution rules

Variables
(also called a B — #
nonterminal)

(a.k.a., productions)

terminals (analogous to a DFA’s alphabet)

CFGs: Formal Definition

ogrammar GGy

Top variable is

Start variable

Variables
(also called a

nonterminal)

R 1s

terminals

A — 0A1

A— B
B — #

A CFG Describes a
Language!

Substitution rules
(a.k.a., productions)

terminals (analogous to a DFA’s alphabet)

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V/, called the terminals,

3. R is a finite set of 7ules, with each rule being a variable and a

string of variables and terminals, and

4. S € V is the start variable.

V = {A, B),
= {O.J, 1,,#},
S = A,

Analogies

Regular Language Context-Free Language (CFL)

Regular Expression (Regexp) Context-Free Grammar (CFG)
A Reg expr describes a Regular lang A CFG describes a CFL

15

Java Language Described with CFGs

ORACLE

Java SE > Java SE Specifications > Java Language Specification

Chapter 2. Grammars

Prev

Chapter 2. Grammars

This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a progran

2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. zach production has an abstract symbol called & nonterminal as its lef
hand side, and a sequence of one or more nonterminal ancl terminal symbols as its right-hand side. For each grammar, the terminal
symbols are drawn from a specified alphabet.

Startina from a sentence consistina of a sinale distinauished nonterminal. called the goal svmbol. a given context-free grammar
specifies a language, namely, the set of possible sequences of terminal symbols that can result from repeatedly replacing any
nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar

A lexical grammar for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of th
Unicode character set. It defines a set of productions, starting from the goal symbol Input (§3.5), that describe how sequences of

l lninAadA nlharantAare (82 A\ ara tranclatad inta a camanna Af inrniit Alarmantes (282 R

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html

16

(partially)

Python Language Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps listed at

#
https://devguide.python.org/qgrammar/

Start symbols for the grammar:

(indentation checking
probably not
describable with a CFG)

single_input i1s a single interactive statement;

file input 1s a module or sequence of commands read from an

eval 1input is the input for the eval() functions.

func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input is followed by extra NEWLINE!

HOoH K W W R

single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

https://docs.python.org/3/reference/grammar.html

input file;

NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE

17

Many (partially)

Python Language Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps Llisted at
https://devguide.python.org/qgrammar/

Start symbols for the grammar:
single_input i1s a single interactive statement;
file input 1s a module or sequence of commands read from an input file;
eval 1input is the input for the eval() functions.
func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input is followed by extra NEWLINE!
NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

&
#
#
#
#
#

https://docs.python.org/3/reference/grammar.html

18

Generating Strings with a CFG

A CFG Represents
a Language!

G1:

Strings in CFG's language
A — 041 = all possible generated strings
A— B

B — #

L(Gy) 1s {0"#1"|n > 0}

Stop when string is all terminals

A CFG generates a string, by repeatedly applying substitution rules:
A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

Start variable || after applying 1t rule Used 2M rule Used last rule

Formal Definition of a CFL

Any language that can be generated by some
context-free grammar is called a context-free language

Flashback: {0"1"|n > 0}

« Pumping Lemma says it's not a regular language

* |t's a context-free language!
* Proof?
« Come up with CFG describing it ...
* It's similar to:

Gl —
A — 0A1
A— B L(Gy)is {0™#1"|n > 0}
B —% €

Formal Definition of a Derivation

A CFG generates a string, by repeatedly applying substitution rules, e.g.:

A = 0A1 = 00A11 = 000A111 = 0008111 = 000#111
This sequence is called a derivation

If u, v, and w are strings of variables and terminals, and A — w is a rule of the
grammar, we say that uwAv yields uwv, written uAv = uwwv. Say that u derives v,

written u = v, if u = v or if a sequence w1, uo, . . ., u exists for k > 0 and
U= U] = U2 = ... = U = .

The language of the grammar is {w € ¥*| S = w}.

In-class exercise: derivations

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)Xx(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a

« Come up with a derivation (a sequence of substs) for string:
*d+dXd

A String Can Have Multiple Derivations
(EXPR) — (EXPR)+(TERM) | (TERM)
—

(TERM) TERM) X (FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a
* EXPR => * EXPR =>
* EXPR + TERM => * EXPR + TERM =>
* EXPR + TERM x FACTOR => * TERM + TERM =>
* EXPR + TERM xa => * FACTOR + TERM =>
*a+ TERM

RIGHTMOST DERIVATION LEFTMOST DERIVATION

Derivations and Parse Trees

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

A derivation may also be represented as a parse tree

A

‘? A Parse Tree

A gives

}‘1 “meaning”
| to a string
B
|

O 0 0 # 1 1 1

Multiple Derivations, Single Parse Tree

Leftmost deriviation Rightmost deriviation
e EXPR => e EXPR =>
* EXPR + TERM => * EXPR + TERM =>
* TERM + TERM => e EXPR + TERM x FACTOR =>
- FACTOR + TERM => (EXPR) » EXPR + TERM x a=>
* a+ TERM /
(TERM) \

Since the “meaning” | (FACTOR)

(i.e., parse tree) is same,
by convention we just
use leftmost derivation a

/

Grammars may be ambiguous

grammar G’:
(EXPR) — (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

Same string,
Different derivation,
and different parse tree!

(EXPR) (EXPR)

/ N\ /

(EXPR) (EXPR) (EXPR) (EXPR)

e N)
(EXPR) | (EXPR) (EXPR) | (EXPR)
(\ / \

a + a X a a + a X a

Ambiguity

DEFINITION 2.7

A string w is derived ambiguously in context-free grammar G if
it has two or more different leftmost derivations. Grammar G is
ambiguous if it generates some string ambiguously.

An ambiguous grammar can give
a string multiple meanings!
(why is this bad?)

Real-life Ambiguity (“Dangling” else)

« What is the result of this C program?
« if (1) if (0) printf("a"); else printf("2");

if (1) if (1)
if (0) if (0)
printf("a"); VS printf("a");
else else
printf("2"); printf("2");

Ambiguous grammars are confusing. In a language,
a string (program) should have only one meaning.

There's no guaranteed way to create an
unambiguous grammar (just have to think about it)

Designing Grammars : Basics

* Think about what you want to “link” together

* E.g.,, XML
« ELEMENT - <TAG>CONTENT</TAG>
« Start and end tags are “linked”

» Start with small grammars and then combine (just like FSMs)

Designing Grammars: Building Up

» Start with small grammars and then combine (just like FSMs)

- To create grammar for lang {0"™1"|n>0}U{1"0"|n >0}

* First create grammar for lang {Oﬂ'ln\ n = 0} :

Sl — 0511 ‘ 5,
« Then create grammar for lang {1"0™| n > 0} :
So — 1550 ‘ €
* Then combine: ¢ _ S1 | S5 A7 = “or = union
Sl N 0811 | e (combines 2 rules

with same left side)

SQ — 1SQO|€

Closed Operations on CFLs

» Start with small grammars and then combine (just like FSMs)
 “Or": S — 51|52
» “Concatenate”™ S — 5155

- “Repetition”: S" — §'S; | €

In-class exercise: Designing grammars

alphabet X 1s {0,1}

{w| w starts and ends with the same symbol }

e S->0C0 | 1C’1 | S “string starts/ends with same symbol, middle can be anything”

e C'->CC | € “all possible terminals, repeated (ie, all possible strings)”

*C->0]1

“all possible terminals”

Check-in Quiz 3/1

On gradescope

