Pushdown Automata (PDAs)

Wednesday, March 3, 2021

Announcements

« HW5 deadline extended
* Now due: Wed 3/10 11:59pm EST

" IOFANOAL
SYMPOSIUM ON
FORMAL LANGUPGES

(et

g
7 eV

GRAMMAR!

L)

« Reminder: Spring Break Mon 3/15 - Sun 3/21

 No classes

Last Time:

Regular Languages Context-Free Languages (CFLs)
Regular Expression (Regexp) Context-Free Grammar (CFG)
A Reg expr describes a Regular lang A CFG describes a CFL

43

Today

Regular Languages Context-Free Languages (CFLs)
Regular Expression (Regexp) Context-Free Grammar (CFG)
A Reg expr describes a Regular lang A CFG describes a CFL
TODAY:
Finite automaton (FSM) Push-down automaton (PDA)

An FSM recognizes a Regular lang A PDA recognizes a CFL

A

Today

Regular Expression (Regexp)
A Reg expr describes a Regular lang

Finite automaton (FSM)
An FSM recognizes a Regular lang
DIFFERENCE:
A Regular lang is defined with a FSM
Must prove: Reg expr < Reg lang

Context-Free Grammar (CFG)
A CFG describes a CFL
TODAY:
Push-down automaton (PDA)
A PDA recognizes a CFL
DIFFERENCE:

A CFL is defined with a CFG
Must prove: PDA <~ CFL

Pushdown Automata (PDA)

« PDA = NFA + a stack

NFA
states

J

stack

%N%ﬂ«—'
W
pJ

Input

A (Mathematical) Stack Specification

» Access to top element of stack only
« Operations: push, pop

Data Element
Data Element

Data Element Data Element

Stack Stack

* (What could be a possible data representation in code?)

Pushdown Automata (PDA)

* PDA = NFA + a stack
e Infinite memory

NFA
states

J

 Can only read/write top location
« Push/pop

stack

%N%N‘—I
(v
[V

input

An Example PDA {0"1"[n =0}

Read

Pop PUSh

input

. € 5—)&/@5%0? (and repeat)

when machine starts:

- don't read input,

- don’t pop anything,

- push empty stack symbol

1,0—¢€
5 $—>s

accept only when
stack is empty

($ = special symbol, indicating empty stack)

read 0, no pop, push 0

(nondeterministically)

1,0—-¢€ read 1, pop 0, no push
(and repeat)

49

Formal Definition of PDA

A pushdown automaton is a 6-tuple (Q, 3,1, 9, qo, I'), where Q, %,
I, and F are all finite sets, and

1. @ is the set of states,

2. ¥ is the input alphabet,

3. F iS the StﬂCk alphabet, Stack alphabet can have special stack symbols, e.g., $
4. 0: Q x Y. x[.—P(Q x I.) is the transition function,

5' 4o & (| Input D{Pop ATt state, al‘ld Push
6. F' C (is the set of accept states.

In-class example

Input | Pop | Push
0,€—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€.e$ > (2 ', and F are all finite sets, and
1

. @ is the set of states,
1,05€ Input | 2. Xis the input alphabet,
3

_ Pop Push
I is the stack alphabet,

1,0—¢€ . 0: QX Y. x TE=P(Q x I.) is the transition function,

4
q3 5. qo € @ is the start state, and
6. F' C (@ is the set of accept states.

€,$—€

Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
q1 {(q23),} Push
i {(42,0)} {(gs,€)} 2 4
Input | Pop | Push q3 1 {(93,8)} 3 {(q4a€)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2+ _15 the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
q2 {(42.0) {(g3,€)} 2 4
Input | Pop | Push 43 1 {(g3,€)} 3 {(qs,€)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2+ _15 the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q=1{q1,92,q3,94},

> = {0,1},
I ={0,$},

= {Qh qfl}a and

§ 1s given by the following table, wherein blank entries signify (0.

Input | Pop | Push

Input: 0 1 € -{ Input
Stack: g 0 $(e|0 $ € I Pop
g1 {(q23 $)} Push
¢ {(¢2,0)} {(g3,¢)} 2 4
q3 1 Jl(q3=€)} 3 {(q4a€)}
da

£—0
g,e—$ QD
1,05€
1,0 €
‘ £,$—¢€

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2+ _15 the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
¢ {(¢2,0)} {(g3,€)} 2 4
o [56a || Gt g3 1 {(g3,€) 3 {(qs,€)}
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
E,e—$.
> Q9 ', and F are all finite sets, and

1. Q is the set of states,
1,03€ Input | 2. Xis the input alphabet
2

_ "| Pop Push
I is the stack alphabet,

1,0—¢€

4. 0: QX . x T#&E==P(Q x I.) is the transition function,
: €,$—¢ 43 5. qo € Q is the start state, and
]
6

. F' C Q is the set of accept states.

Q =1{4q1,92,93, 94},
> = {0,1},

' ={0,$},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
‘A {(q23 $)} Push
g2 {(g2.0)} {(g3,€)} 2 4 5
Input | Pop | Push 3 1 {(g3,€)} 3 1(q4,€) ;]
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
€,€239 > ', and F are all finite sets, and

1. Q is the set of states,
;
E,$—¢€

1,056 Input z Y. is the input alphabet, Pop oush

I is the stack alphabet,
1,0—¢€ 4. §: Q X . x T P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Pushdown Automata (PDA)

Input | Pop | Push

 PDA = NFA + a stack 4, €28 (0

* Infinite memory
 Can only read/write top location 1,0—€

« Push/pop
04 €,$—¢€ &

0,€—0

1,0—¢€

« Want to prove: PDA < CFG

* Then, to prove that a language iIs context-free, we can either:
* Create a CFG, or
* Create a PDA

CFL <~ PDA

A lang Is a CFL iff some PDA recognizes it

« => |f a language Is a CFL, then a PDA recognizes it
« (Easier)
« We know: A CFL has a CFG describing it (definition of CFL)
« To prove forward dir: Convert CFG -> PDA

- <= |f a PDA recognizes a language, then it's a CFL

CFG -> PDA

» Construct a PDA from CFG such that:
« PDA accepts input string only if the CFG can generate that string

* Intuitively, PDA will nondeterministically try all rules

push start variable onto stack

e, A—-w forrule A—w

a,a—e for terminal a

Transition with multiple stack pushes

a,s—TrYz —> Sesy

o

CFG -> PDA

» Construct PDA from CFG such that:
« PDA accepts input string only if the CFG can generate that string

* Intuitively, PDA will nondeterministically try all rules

push start variable onto stack

if stack top is a variable, pop and
(nondet) push rule’s right-side

e, A—-w forrule A—w

a,a—e for terminal a

If stack top is a terminal, pop and
read matching input

Example CFG -> PDA

S —alb|b
T — Tale

If stack top is variable S, pop S
and push rule right-side (in rev order)

e,5—b)O€,€—>T)O gy |
g, [—a ’O e, e—1T l

g,S—b
g, l—e
a,a—€

Example CFG -> PDA

S — alb|b
T — Tale

e,S5—b)O€,€—>T)O £,€—a
g, [—a)O 2 e l

e, l—e
a,a—e€

o

Example CFG -> PDA

S — alb|b
T — Tale

e,5—b)Os,e—ﬂ")o g,e—a
g, [—a ’O e, e—1T l

g,S5—b
e, T—e
a,a—e€

b,b—e
if stack top is a terminal, pop and
read matching input

Example Derivation using CFG:

Example CFG -> PDA 5>

alb ->
alTab ->

T — Tale

e,5—b)O€,€—>T)O g,e—a
g, [—a ’O e, e—1T l

PDA Example, input aab

e,S5—b
EPNESS S->aTb ->
a,a—€

b.b—e a Tb -> Tab -> ab ->
-]

aab

A lang Is a CFL iff some PDA recognizes it

« => |f a language Is a CFL, then a PDA recognizes it
» (Easier)
« We know: A CFL has a CFG describing it (definition of CFL)
 Need to: Convert CFG -> PDA (DONE!)

« <= If a PDA recognizes a language, then it's a CFL
 (Harder)
 Need to: Convert PDA -> CFG

PDA -> CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Important:
This doesn’t change the language recognized by the PDA
(confirm this to yourselves)

PDA P -> CFG G : Variables

P=(Q,%,T,8,q0, {Gaccept}) Variablesof G are {A,,| p,q € Q}

- Want: if P goes from state p to g reading input x, then some A4, generates x

°
n

o: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by,

* Add rules: A,, > A,,A,, for each state r
* These rules allow grammar to simulate every possible transition
 (We haven't added input read/generated terminals yet)

« To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

* The key: pair up stack pusties and pops (essence of g CFL)

if 6(pSa,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

* The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and §(s, b, u) contains (q, €),

put the rule A4,,«=aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

* The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a, €) contains (r, v) and §(s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G

A language I1s a CFL <> A PDA recognizes it

« => |f a language Is a CFL, then a PDA recognizes it
« We know: A CFL has a CFG describing it (definition of CFL)
 Need to: Convert CFG -> PDA (DONE!)

« <= |f a PDA recognizes a language, then it's a CFL
 Need to: Convert PDA -> CFG (DONE!)

Regular languages are CFLs: 3 Proofs

* NFA -> PDA (with no stack moves) => CFG
e Just now

* DFA -> CFG
» Textbook page 107

« Regular expression -> CFG
« HW5

context-free

languages

regular

languages

Check-in Quiz 3/3

On Gradescope

