Pushdown Automata (PDAs)

Wednesday, March 3, 2021

Announcements

- HW5 deadline extended
 - Now due: Wed 3/10 11:59pm EST

- Reminder: Spring Break Mon 3/15 Sun 3/21
 - No classes

<u>Last Time</u>:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL

<u>Today</u>

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL

<u>Today</u>

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL
DIFFERENCE:	DIFFERENCE:
A Regular lang is <u>defined</u> with a FSM	A CFL is <u>defined</u> with a CFG
Must prove: Reg expr ⇔ Reg lang	Must prove: PDA ⇔ CFL

Pushdown Automata (PDA)

• PDA = NFA + a stack

A (Mathematical) Stack Specification

- Access to top element of stack only
- Operations: push, pop

• (What could be a possible data representation in code?)

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

An Example PDA $\{0^n 1^n | n \ge 0\}$

Formal Definition of PDA

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet can have special stack symbols, e.g., \$

- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function, 5. $q_0 \in \mathbb{Q}$ Input i Pop irt state, and Push
- **6.** $F \subseteq Q$ is the set of accept states.

In-class example

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- Input

2. Σ is the input alphabet, Push

- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$

$$F = \{q_1, q_4\}, \text{ and }$$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

- Then, to prove that a language is context-free, we can either:
 - Create a CFG, or
 - Create a PDA

CFL ⇔ **PDA**

A lang is a CFL iff some PDA recognizes it

- => If a language is a CFL, then a PDA recognizes it
 - (Easier)
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove forward dir: Convert CFG -> PDA
- <= If a PDA recognizes a language, then it's a CFL

CFG -> PDA

- Construct a PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string

• Intuitively, PDA will <u>nondeterministically</u> try all rules

Transition with multiple stack pushes

CFG -> PDA

- Construct PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string

• Intuitively, PDA will <u>nondeterministically</u> try all rules

arepsilon , \$ightarrow arepsilon

 $q_{
m accept}$

Example Derivation using CFG:

S ->

a*T***b** ->

 $aTab \rightarrow$

aab

 $\begin{array}{l} \varepsilon \, , S \!\! \to \!\! \mathrm{b} \\ \varepsilon \, , T \!\! \to \!\! \varepsilon \end{array}$

a,aightarrowarepsilon

b,bightarrow arepsilon

PDA Example, input aab

Input read	Stack
	S-> aTb->
a	<i>T</i> b -> <i>T</i> ab -> ab ->
aa	b->
aab	

A lang is a CFL iff some PDA recognizes it

- => If a language is a CFL, then a PDA recognizes it
 - (Easier)
 - We know: A CFL has a CFG describing it (definition of CFL)
 - Need to: Convert CFG -> PDA (DONE!)
- <= If a PDA recognizes a language, then it's a CFL
 - (Harder)
 - Need to: Convert PDA -> CFG

PDA -> CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA (confirm this to yourselves)

$PDA P \rightarrow CFG G$: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)
- To add terminals: pair up stack pushes and pops (essence of a CFL)73

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- => If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - Need to: Convert CFG -> PDA (DONE!)
- <= If a PDA recognizes a language, then it's a CFL
 - Need to: Convert PDA -> CFG (DONE!)

Regular languages are CFLs: 3 Proofs

- NFA -> PDA (with no stack moves) -> CFG
 - Just now
- DFA -> CFG
 - Textbook page 107
- Regular expression -> CFG
 - HW5

Check-in Quiz 3/3

On Gradescope