Non-Context-Free Languages,

and Intro to Turing Machines
Wednesday, March 10, 2021

Announcements

- Reminder: no class next week (Spring Break)
* 3/15-3/19

« HW 5 due tonight
* 11:59pm EST

« HW 6 released
« Due Sun 3/28 11:59pm EST (after break)

/.v ?:.-::E.".-
i - BAGKIAGAIN -

Flashback: Pumping Lemma for Reg Langs

« The Pumping Lemma describes how strings repeat

e Strs in a regular lang can (only) repeat using Kleene pattern
« Before/during/after parts are independent!

* Langs with dependencies are nonregular: -
- E.g. {On’ 1"| p > 0} Repeating pattern —>¢{

’
]
\—
= -
N 1
N - | After repeat
o
’ “‘A -
t\ - rd ~
I Al
~
S S \ 1
S e \ \ 1
\-I 1 1
! }
!
- 1
’f ~_
)

« Today: How do CFLs repeat? Before repeat ||

\ Independent

Repetition and Dependency in CFLs

Parts before/after repetition are linked

Repetition /1 — 041 {On#1ﬂ| n > 0}

o

B — #
O 0 O 1 1 1

- —>—>—n—0x

Parts before/after repetition are linked

How Can Strings in CFLs Repeat?

e Strings In regular languages repeat states

e Strings In CFLs repeat subtrees in the parse tree

Linked parts

-

Pumpins CFLS

Pumping lemma yuages If A isa context-free language,
then there is a nu length) where, if s is any string in A of

length at least p. then s mav.be divided into five pieces s = uvxyz satisfying the
P Now there are two pumpable parts.
conditions But they must be pumped together!

1. for each ¢ > 0, wvtzy'z € A,
2. |vy| > 0, and

3. “U:By| < p. Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| > 0, and
3. [zy| < p.

Non CFL example: D = {ww| w € {0,1}*}

 Previous: Showed D is nonregular w. unpumpable string s: 0P10P1
« Now: this s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

u () €Z Yy e
Pumping v and y (together) produces string still in D

e CFL Pumping Lemma conditions: 1. for each i > 0, uv'zy'z € A,

This doesn’t prove that the language is a CFL! 2. |vy| > 0, and
It only means the counterexample doesn't 3. |vzy| < p.
work to prove it's non context-free.

Non CFL example: D = {ww| w € {0,1}*}

« Choose another string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

0P1PQOP1P
\e— —

So vyx must straddle the middle x
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and
3. [vzy| < p.

Non CFL example: D = {ww| w € {0,1}*}

* Previously: Showed D Is not regular

e Just Now: D Is not context-free either!

XML Again ..

» We previously said XML sort of looks like the CFL: {0™1"™|n > 0}
» ELEMENT - <TAG>CONTENT</TAG>

* Where TAG Is any string But these arbitrary TAG strings must match!

« So XML also looks like this non-CFL: D = {ww| w € {031}:*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
 so they can be embedded into a finite number of rules.

e In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2" pass with a more powerful machine ...

A More Powerful Machine ...

Can move to arbitrary memory
locations, and read/write to it

M, accepts its input if it is in language: B = {w#w| w € {0,1}*}
M; = “On inpjt string w: Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either
side ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Turing Machines (TMs)

WHEN IT CAME TO EATING STRIPS (F CANDY BUTTONS,
THERE WERE TWONAN STRATEGIES. SOME KIDs
CAREFULLY REMOVED EACH BEAD, CHECKING

CLOSELY FOR PAFER RESIDVE. BEFORE EANNG.-

THEN THERE WERE THE LONELY FEW OFUS
WHO MOVED BAck AND FORTH ON THE STRIP,
EATING ROWS OF BEADS HERE AND THERE,
PRETENDING WE WERE TLRING MALHINES.

CTHERS TORE THE CANDY
OFF HAPHAZARDLY,
SWALLOWING LARGE SLRAFS
0F PAPER s THEY ATE .

125

Alan Turing

* First to formalize models of computation that we are studying
* |.e., he invented this course

e Also studied Al
« Turing Test

Automata vs Turing Machines

« Turing Machines can read and write to “tape”
« Tape Initially contains input string

input | | Empty tape locations

* The tape Is infinite

States l

head al|b abrl_l LJ u‘-é
« Each step: “head” can move left or right

« A Turing Machine can accept/reject at any time

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine
recognizes it.

This is an informal
TM description.
One step = multiple
transitions

Turing Machine Example

input
M accepts inputs in language B = {w#w| w € {0,1}*} |
| | —
M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Y
x11000#011000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...
T i 1t ' ~
1. Zlg zag across the tape to corresponding positions on elthfzr T N0 00%£011000u ...
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: “zag” to start 011000#011000

1. Zig-zag across the tape to corresponding positions on either

Y
. .. . x11000#011000
side of the # symbol to check whether these positions contain

—

the same symbol. If they do not, or if no # is found, reject. x11000#x11000
Cross off symbols as they are checked to keep track of which I

x11000#x11000
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . B
M, = “On input string w: Continue crossing off 011000#0
1. Zig-zag across the tape to corresponding positions on either B
. .. . x11000#0
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x
Cross off symbols as they are checked to keep track of which Nii10004
symbols correspond. 8 :)
“Cross off” = xx1000#x

“_n

write “x” char

1000

1000

1000

1000

1000

...

...

I

uo...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: 01
1. Zig-zag across the tape to corresponding positions on either B
. .. . x 1
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject. x 1

Cross off symbols as they are checked to keep track of which —
symbols correspond.

2. When all symbols to the left of the # have been crossed off, x X
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

01

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: 01
1. Zig-zag across the tape to corresponding positions on either B
. .. . x 1
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject. x 1

Cross off symbols as they are checked to keep track of which —
symbols correspond.

2. When all symbols to the left of the # have been crossed off, x X
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

01

Ou ...

Ou ...

Xu ...

accept

Turing Machines: Formal Definition

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q,3,1,6, qo, Gaccepts Greject), Where
Q, X, I' are all finite sets and

1. @ is the set of states,

. 2 1s the input alphabet not containing the blank symbol L
. T 1s the tape alphabet, where u = T'and ¥ C T,

.0: Q xI'—@Q x I x {L,R} is the transition function,

qo € ('read e st Write |/ move

. Qaccept € @ 1s the accept state, and

N QNN W

. Greject € @ 1s the reject state, where greject 7 Gaccept-

Formal Turing Machine Example

Ou ...

Ou ..

Ou ...

Ou ..

oy

XxXu ...

accept

Mov

~

-

Read char (0 or 1), cross it off, move head R(ight)

Accept if all
crossed out

“zag” Left
to last x

X—>R

Cross off A

SJ oer1 A

Y

#—L
(E%EZ:::) 0,1—L

Turing Machine: Informal Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain

the same symbol. If they Ae—xe ~o 1s found, reject.

Cross off symbols as thes/ We will .(mostly) a_track of which

symbols correspond. stick to informal

descriptions of
2. When all symbols to Turing machines,

check for any remaining \ like this one

n crossed off,
t of the #. If any

TM Informal Description: Caveats

« TM informal descriptions are not a “do whatever” card
« They must be sufficiently precise to communicate the formal tuple

* Input must be a string, written with chars from finite alphabet

« An informal “step” represents sequence of formal transitions
* |.e., some finite number of transitions
* |t cannot run forever
« E.g., can’t say “try all numbers” as a “step”

Non-halting Turing Machines (TMs) <®

* A DFA, NFA, or PDA always halts
- Because the (finite) input is always read exactly once

« But a Turing Machine can run forever
 E.g., the head can move back and forth in a loop

* Thus, there are two classes of Turing Machines:
« A recognizer is a Turing Machine that may run forever
« A decider is a Turing Machine that always halts.

DEFINITION 3.5 DEFINITION 3.6

Call a language Turing-recognizable it some Turing machine Call a language Turing-decidable or simply decidable if some
recognizes it. Turing machine decides it.

Formal Definition of an “Algorithm”

« An algorithm is equivalent to a Turing-decidable Language

Turing-recognizable

decidable

context-free

Check-in Quiz 3/10

On Gradescope

