Turing Machine Variants -— A

MACHINE M THAT RUNS IN SOME POLYNOMIAL
M O n d a Ma rC h 22 2021 TIME p(r), WE CAN DEVISE AN ALGORITHM
? THAT TAKES AN INPUT «w OF LENGTH n AND
PRODUCES Enw. THE RUNNING TIME IS O(R*m)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND,..

WTF, MAN, I JUST
WANTED TO LEARN
How To PROGRAM
VIDEO GAMES.

Welcome Back!

« HW 6 due Sun 3/28 11:59pm EST
* Ch 2-3 material

’ HW 7 O Ut THUS, FOR ANY NONDETERMINISTIC TURING
[) Ch 4 material (Which We Start On Wed) TIME p(r), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Enuw. THE RUNNING TIME IS O(p¥n))

* Due Sun 4/4 11:59pm EST .‘

WTF, MAN. I JUST

WANTED To LEARN
How To PROGRAM
VIDEO GARMES.

CS420, S0 Far

« Turing Machines (TMs) ==

» Infinite tape (memory), arbitrary read/write
« Expresses any “computation”

* PDAs: recognize context-free languages
» Infinite stack (memory), push/pop only /
« Can’t express arbitrary dependency, decidable

. eg. {ww| w € {0,1}*) /
. / context-free
. DFA; / NFAs: recognize regular langs T
* Finite states (memory) regular (i.e., halting TMs)
(starting Wed)

Turing-recognizable

« Can’t express dependency
e.g., {0"1"|n > 0}

Last Time: Turing Machines

« Turing Machines can read and write to a “tape”
« Tape Initially contains input string

input | | Empty tape locations

o States
* The tape Is infinite l

head al|b abrl_l LJ u‘é
« Each step: “head” can move left or right

« A Turing Machine can accept/reject at any time

Last time: Informal vs Formal Description

M, accepts input in language: B = {w#w| w € {0,1}*}

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q, 2,1, 8, o, Gaccepe: Greject), Where

M]_ — “On lIlpllt Strlng w: Q, 3, T are all finite sets and
. . - . 1. Q is the set of states,
1. Zig-zag across the tape to corresponding positions on either 2. % is the input alphabet not containing the blank symbol s,
. . . LTi 2 abet, where u and ¥ C T,
side of the # symbol to check whether these positions contain b e oo Fnccion.
the same symbol. If they do not, or if no # is found, reject. o e e e and
. + Gaccept is the accept state, anc
Cross off symbols as they are checked to keep track of which 7
symbols correspond. -
2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
0,1—R ‘@ 0,1—R

symbols remain, reject; otherwise, accept.”

« Greject € @ s the reject state, where Greject 7 Gaccept-

v

Last time: Non-Halting Machines <®

* A DFA, NFA, or PDA always halts
 Because the (finite) input is read in order, exactly once

« A Turing Machine can run forever
 E.g., the head can move back and forth in a loop

* Thus, there are two classes of Turing Machines:
« A recognizer is a Turing Machine that may run forever
« A decider is a Turing Machine that always halts

DEFINITION 3.5 DEFINITION 3.6

Call a language Turing-recognizable it some Turing machine Call a language Turing-decidable or simply decidable if some
recognizes it. Turing machine decides it.

Today:

Y

0|1(0]|1|0|u
1. Multi-tape TMs | \/ ,

ala|a|lu

4_~Ir

b|la|u

Deterministic Nondetermi_nistic

computation computation

(,
2. Non-deterministic TMs ;
s‘
(

s

%

M

e £

B

accept or reject * accept

We will prove that
all TM variations
are equivalent

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM < Multi-tape TM

=> If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
* A single-tape TM Is equivalent to ...
e .. a multi-tape TM that only uses one of Its tapes
 DONE!

<= If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
e Convert multi-tape TM to single-tape TM

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

¥
O|1{0|1[O0|u|...

M !

ala|la|U|f ...

-l
Y

s

Theorem: Single-tape TM < Multi-tape TM

=> If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
* Asingle-tape TM Is equivalent to ...

.. a multi-tape TM that only uses one of Its tapes
 DONE!

<= If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
e Convert multi-tape TM to single-tape TM
- DONE! H

Non-Deterministic Turing Machines

Flashback: DFAs vs NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet,

3. 0: Q x X— Q) is the transition function,
4. g0 € Q is the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

Last Time: Turing Machine formal def

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1.
. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N Nk WN

Q 1s the set of states,

. Qreject € () 1s the reject state, where greject 7 Gaccept-

determ"“.‘stofc - -
Non-8€= ine: Turing Machine formal def

DEFINITION 3.3
Nondeterministic

A Turing Machine is a 7'mplea (Q: E: Il 5: d0s Qaccepts qreject)a where
(2, X, I are all finite sets and

1. Q is the set of states,
. 2 1s the input alphabet not containing the blank symbol L,

. I is the tape alphabet, where u € 'and ¥ C T,

. T R 0: Q@ xI'—P(Q xT x{L,R})

. o € @ 1s the start state,
« Qaccept € @ 15 the accept state, and

N O\ A WN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

Thm: Deterministic TM < Non-det. TM

=> If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
« To convert Deterministic TM = Non-deterministic TM ...

.. change Deterministic TM delta fn output to a one-element set
e (just like conversion of DFA to NFA)

* DONE!

<= If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e To convert Non-deterministic TM = Deterministic TM ...
° ?7?7?

Review: Nondeterminism

Deterministic Nondeterministic
computation computation

o start .

Q star (N

(i\: 'T In nondeterministic
;

. computation, every

(
é. : (1 step can branch into
Q.

Y a set of states
reject (1
: What is a “state”

.. '\ fora TM?
(

- accept or reject §: Q X F—)P(Q X ' % {L,}.R})

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
=
SN
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... Conﬁgafterzsteps
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW6)

Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

® 1011¢;01111

For TMs, each J
node is a reject o)'
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k

Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: computation
* Det. TM keeps multiple configs single tape (1

* Like how single-tape TM simulates multi-tape
AN Y
[J [[

* Then run all configs, in parallel
 |.e, 1step on one config, 1 step on the next, ...

1011¢,01111 #1011g,01111

. ' ' figis foun .
Accept If any accepting config Is found - y),
. Important: Deterministic TM | :
' o keeps all configs *
« Why must we step configs in parallel? at each step on 1

one tape) accept

Interlude: Running TMs inside other TMs

Exercise:
« Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1:

) reject accept accept
* M=on mPUt X . accept reject accept
* Run M, on x, accept if M, accepts
« Run M, on x, accept if M, accepts x

Note: This solution would be ok if
we knew M, and M, were deciders

Interlude: Running TMs inside other TMs

Exercise:

« Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1:

« M =o0n input x,
« Run M, on x, accept if M, accepts
* Run M, on x, accept if M, accepts

Possible solution #2;

* M=o0ninputx,
« Run M, and M, on x in parallel, i.e.,
« Run M, on x for 1 step, accept if M, accepts
« Run M, on x for 1 step, accept if M, accepts
« Repeat

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
loops

M MM

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
accept

V]

V]

30

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
« Deterministically check every tree path, ‘(1
in breadth-first order [j\
* 1 1] 2

. 1-1 : ‘

(book’s way)

R

* accept

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
- Deterministically check every tree path, ‘(\,
in b1readth-f|rst order {;\v : *
* 1023 4

1 Y
reject '[\'

(book’s way)

R

* accept

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
« Deterministically check every tree path, ‘(1
in breadth-first order {1 \; NN
* 1 VAR 4

12 Y
. 1-1-1 | V/\r

reject

(book’s way)

R

* accept

Nondeterministic TM = Deterministic |2 way

(book’s way)
Always has input, Needs 3 tapes
never changes
R’
0|/0[1]|0|u| ... Inputtape
1D, d Used to run each path
x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g., 1-1-2, etc.

1(2(3|3(2|3|1(2|1]|1|3|u|... addresstape

Nondeterministic TM <& Deterministic TM

=> If a deterministic TM recognizes a language,

then a nondeterministic TM recognizes the language
e To convert Deterministic TM = Non-deterministic TM ...

.. change Deterministic TM delta fn output to a one-element set
e (just like conversion of DFA to NFA)

* DONE!

If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert Nondeterministic TM = Deterministic TM
- DONE! B

Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine

Check-in Quiz 3/22

On gradescope

