Turing Machine Variants

Monday March 22, 2021

Welcome Back!

- HW 6 due Sun 3/28 11:59pm EST
 - Ch 2-3 material

- HW 7 out
 - Ch 4 material (which we start on Wed)
 - Due Sun 4/4 11:59pm EST

CS420, So Far

Turing Machines (TMs)

- Infinite tape (memory), arbitrary read/write
- Expresses any "computation"
- PDAs: recognize context-free languages
 - Infinite stack (memory), push/pop only
 - · Can't express arbitrary dependency,
 - e.g., $\{ww|\ w\in \{0,1\}^*\}$
- DFAs / NFAs: recognize regular langs
 - Finite states (memory)
 - Can't express dependency e.g., $\{0^n 1^n | n \ge 0\}$

Last Time: Turing Machines

• Turing Machines can read and write to a "tape"

Tape initially contains input string

• The tape is infinite

• Each step: "head" can move left or right

A Turing Machine can accept/reject at any time

<u>Last time</u>: Informal vs Formal Description

M_1 accepts input in language: $B = \{w \# w | w \in \{0,1\}^*\}$

M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

DEFINITION 3.3

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

IMPORTANT SLIDE

Last time: Non-Halting Machines

- A DFA, NFA, or PDA <u>always halts</u>
 - Because the (finite) input is read in order, exactly once
- A Turing Machine can <u>run forever</u>
 - E.g., the head can move back and forth in a loop

- Thus, there are <u>two classes of Turing Machines</u>:
 - A <u>recognizer</u> is a Turing Machine that may run forever
 - A <u>decider</u> is a Turing Machine that always halts

DEFINITION 3.5

DEFINITION 3.6

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.

<u>Today</u>:

1. Multi-tape TMs

2. Non-deterministic TMs

We will prove that all TM variations are **equivalent**

Reminder: Equivalence of Machines

• Two machines are equivalent when ...

• ... they recognize the same language

<u>Theorem</u>: Single-tape TM ⇔ Multi-tape TM

- => **If** a single-tape TM recognizes a language, **then** a multi-tape TM recognizes the language
 - A single-tape TM is equivalent to ...
 - ... a multi-tape TM that only uses one of its tapes
 - DONE!
- <= If a multi-tape TM recognizes a language,
 then a single-tape TM recognizes the language</pre>
 - Convert multi-tape TM to single-tape TM

Multi-tape TM → Single-tape TM

<u>Idea</u>: Use delimiter (#) on single-tape to simulate multiple <u>tapes</u>

• Add "dotted" version of every char to simulate multiple heads

<u>Theorem</u>: Single-tape TM ⇔ Multi-tape TM

- => **If** a single-tape TM recognizes a language, **then** a multi-tape TM recognizes the language
 - A single-tape TM is equivalent to ...
 - ... a multi-tape TM that only uses one of its tapes
 - DONE!
- <= If a multi-tape TM recognizes a language,
 then a single-tape TM recognizes the language</pre>
 - Convert multi-tape TM to single-tape TM
 - DONE!

Non-Deterministic Turing Machines

Flashback: DFAs vs NFAs

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

VS

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

<u>Last Time</u>: Turing Machine formal def

DEFINITION 3.3

- A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - **1.** Q is the set of states,
 - **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
 - **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - **5.** $q_0 \in Q$ is the start state,
 - **6.** $q_{\text{accept}} \in Q$ is the accept state, and
 - 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Non-deterministic Non-deterministic Turing Machine formal def

```
DEFINITION 3.3
   Nondeterministic
                        is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where
A Turing Machine
Q, \Sigma, \Gamma are all finite sets and
   1. Q is the set of states,
   2. \Sigma is the input alphabet not containing the blank symbol \Box,
```

- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,

4.
$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$$
 $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Thm: Deterministic TM ⇔ Non-det. TM

- => **If** a deterministic TM recognizes a language, **then** a nondeterministic TM recognizes the language
 - To convert Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM delta fn output to a one-element set
 - (just like conversion of DFA to NFA)
 - DONE!
- <= If a nondeterministic TM recognizes a language,
 then a deterministic TM recognizes the language</pre>
 - To convert Non-deterministic TM → Deterministic TM ...
 - ... ???

Review: Nondeterminism

Nondeterministic Deterministic computation computation • start In nondeterministic computation, every step can branch into a set of states reject What is a "state" for a TM? accept or reject $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

TM Configuration = State + Head + Tape

TM Configuration = State + Head + Tape

Nondeterminism in TMs

1st way

- Simulate NTM with Det. TM:
 - Det. TM keeps multiple configs single tape
 - Like how single-tape TM simulates multi-tape
 - Then run all configs, in parallel
 - I.e., 1 step on one config, 1 step on the next, ...
 - Accept if any accepting config is found
 - Important:
 - Why must we step configs in parallel?

Nondeterministic computation

Interlude: Running TMs inside other TMs

Exercise:

• Given TMs M_1 and M_2 , create TM M that accepts if either M_1 or M_2 accept

Possible solution #1:

- M = on input x,
 - Run M_1 on x, accept if M_1 accepts
 - Run M_2 on x, accept if M_2 accepts

M_1	M_2	M	
reject	accept	accept	
accept	reject	accept	V

Note: This solution would be ok if we knew M_1 and M_2 were **deciders**

Interlude: Running TMs inside other TMs

Exercise:

• Given TMs M_1 and M_2 , create TM M that accepts if either M_1 or M_2 accept

Possible solution #1:

- M = on input x,
 - Run M_1 on x, accept if M_1 accepts
 - Run M_2 on x, accept if M_2 accepts

Possible solution #2:

- M = on input x,
 - Run M_1 and M_2 on x in parallel, i.e.,
 - Run M_1 on x for 1 step, accept if M_1 accepts
 - Run M_2 on x for 1 step, accept if M_2 accepts
 - Repeat

M_1	M_2	M
reject	accept	accept
accept	reject	accept 🗸
accept	loops	accept
loops	accept	loops

M_1	M_2	М	
reject	accept	accept	
accept	reject	accept	<u> </u>
accept	loops	accept	
loops	accept	accept	<u> </u>

2nd way (book's way)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1

2nd way (book's way)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - 1-2

Nondeterministic computation

2nd way (book's way)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - 1-2
 - 1-1-1

Nondeterministic computation

- => **If** a deterministic TM recognizes a language, **then** a nondeterministic TM recognizes the language
 - To convert Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM delta fn output to a one-element set
 - (just like conversion of DFA to NFA)
 - DONE!
- <= If a nondeterministic TM recognizes a language,
 then a deterministic TM recognizes the language</pre>
 - Convert Nondeterministic TM → Deterministic TM
 - DONE!

Conclusion: These are All Equivalent TMs!

Single-tape Turing Machine

Multi-tape Turing Machine

Non-deterministic Turing Machine

Check-in Quiz 3/22

On gradescope