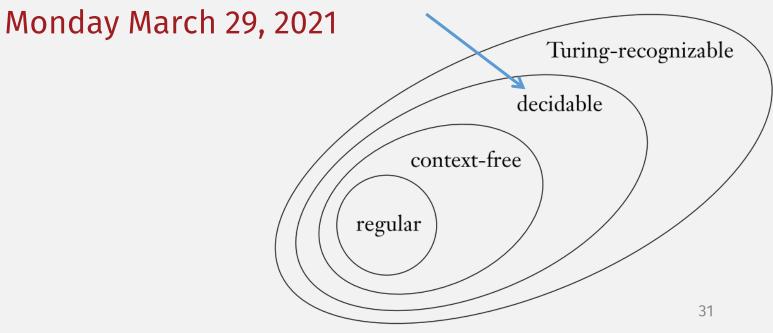
Decidable Problems (i.e., Algorithms) about Context-Free Languages (CFLs)



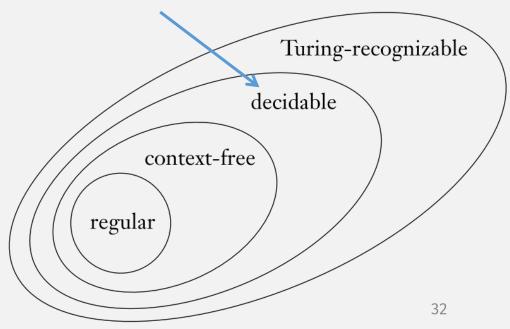
Announcements

HW 6 due date past

• HW 7 due Sun 4/4 11:59pm EST

• Remember to use your "library" of theorems

- HW 8 out soon
 - due Sun 4/11 11:59pm EST
 - Covers Ch 4-5 material (starting Wed)



Last time: Decidable DFA Langs (i.e., algorithms)

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$

- $A_{\mathsf{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

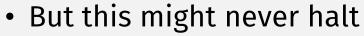
Remember:

TMs = programs
Creating TM = programming
Previous theorems = library

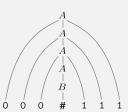
Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$

- This a is very practically important problem ...
- ... equivalent to:
 - Is there an algorithm to parse a programming language with grammar G?
- A Decider for this problem could ...?
 - Try every possible derivation of G, and check if it's equal to w?

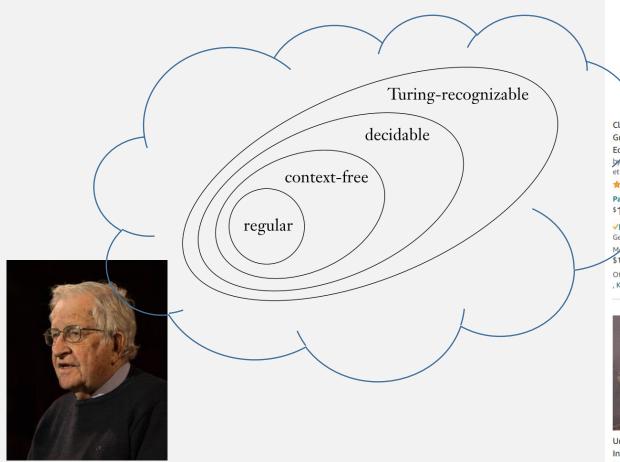


- e.g., if there is a rule like: S -> OS or S -> S
- This TM would be a recognizer but not a decider
- Idea: can the TM stop checking after some length?
 - i.e., Is there upper bound on the number of derivation steps?



Chomsky Normal Form

Noam Chomsky



Later ...

Climate
Crisis and
the Global
Green New
Deal
Noam Chomsky
Robert Pollin

Climate Crisis and the Global Green New Deal: The Political Economy of Saving the Planet by Noam Chomsky, Robert Pollin,

Paperback

\$15⁸¹ \$18.95 **prime** FREE One-Day Get it tomorrow, Oct 29

More Buying Choices \$13.19 (56 used & new offers)

Other formats: Audible Audiobook , Kindle

Manufacturing Consent: The Political Economy of the Mass Media

by Edward S. Herman and Noam Chomsky

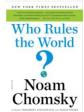
**** ~ 795

\$15⁷⁵ \$21.00

✓prime FREE One-Day Get it Tomorrow, Oct 29 More Buying Choices

\$9.39 (64 used & new offers)

Other formats: Audible Audiobook , Kindle , Hardcover , Audio CD



Who Rules the World? (American Empire Project) Part of: American Empire Project (29 Books)

★★★★☆ ~ 415

Paperback

\$15⁷⁹ \$19.00

✓prime FREE One-Day
Get it Tomorrow, Oct 29
More Buying Choices
\$8.33 (50 used & new offers)

Other formats: Audible Audiobook , Kindle , Hardcover , Audio CD

On Anarchism

by Noam Chomsky and Nathan Schneider

★★★★ ~ 250

Paperback

\$1445 \$15.95

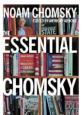
✓prime FREE Delivery Fri, Oct 30

More Buying Choices

\$10.00 (37 used & new offers)

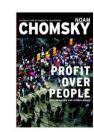
Other formats: Audible Audiobook , Kindle , Audio CD

Understanding Power: The Indispensable Chomsky by Noam Chomsky, Peter R. Mitchell (editor), et al.

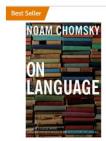


The Essential Chomsky by Noam Chomsky and Anthony Arnove

**** × 132



Profit Over People: Neoliberalism & Global Order by Noam Chomsky and Robert W. McChesney



On Language: Chomsky's Classic Works: Language and Responsibility and Reflections

Chomsky Normal Form

DEFINITION 2.8

A context-free grammar is in *Chomsky normal form* if every rule is of the form

A o BC 2 kinds of rules

A o a Terminals only

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Chomsky Normal Form: Number of Steps

- To generate a string of length *n*:
 - n-1 steps: to generate n variables
 - + *n* steps: to turn each variable into a terminal
 - <u>Total</u>: *2n 1* steps

Chomsky normal form

$$A \to BC$$

$$A \rightarrow a$$

Chomsky normal form

 $A \rightarrow a$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var

$$S oup ASA \mid aB$$
 $A oup B \mid S$
 $B oup b \mid arepsilon$
 $S oup ASA \mid aB$
 $A oup B \mid S$
 $A oup B \mid S$
 $B oup b \mid arepsilon$

Chomsky normal form

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \varepsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvw$

$$S_0 o S$$
 $S o ASA \mid aB \mid \mathbf{a}$ $S o ASA \mid aB \mid \mathbf{a}$ $S o ASA \mid aB \mid \mathbf{a} \mid \mathbf{S}A \mid \mathbf{A}S \mid \mathbf{S}$ $S o B \mid S \mid \boldsymbol{\varepsilon}$ Then, add $S o B \mid S \mid \boldsymbol{\varepsilon}$ Then, add $S o B \mapsto B \mid S \mid \boldsymbol{\varepsilon}$ Then, remove

Chomsky normal form

- 1. Add new start variable S_0 that does not appear on any RHS $A \rightarrow BC$ $A \rightarrow a$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$
- 3. Remove all "unit" rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$

$$S_0 o S$$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S$
 $B o b$
Remove, no add (same variable)

$$S_0
ightarrow S \mid ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$$

 $S
ightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS$
 $A
ightarrow B \mid S$
 $B
ightarrow \mathbf{b}$

 $S_0 o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \mid$ $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$ A
ightarrow S b $\mid ASA \mid$ a $B \mid$ a $\mid SA \mid AS$

Remove, then add S RHSs to S_0

Chomsky normal form

 $S_0 o ASA \mid aB \mid a \mid SA \mid AS$

 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$

 $A
ightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$
- 3. Remove all "unit" rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$
- 4. Split up rules with RHS longer than length 2
 - E.g., $A \rightarrow wxyz$ becomes $A \rightarrow wB$, $B \rightarrow xC$, $C \rightarrow yz$
- 5. Replace all terminals on RHS with new rule
 - E.g., for above, add $W \rightarrow w, X \rightarrow x, Y \rightarrow y, Z \rightarrow z$

$$S_0 \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ S \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ A \rightarrow \mathtt{b} \mid AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ A_1 \rightarrow SA \\ U \rightarrow \mathtt{a}$$

 $B \to b$

 $B \to b$

Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

Proof: create the decider:

- S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:
 - 1. Convert G to an equivalent grammar in Chomsky normal form.
 - 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
 - 3. If any of these derivations generate w, accept; if not, reject."

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

Recall:

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$$

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of A.
- 2. Repeat until no new states get marked:
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, accept; otherwise, reject."

"Reachability" (of accept state from start state) algorithm

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

- ullet Create decider that calculates reachability for grammar G
 - Except go backwards, start from terminals, to avoid looping

R = "On input $\langle G \rangle$, where G is a CFG:

- **1.** Mark all terminal symbols in *G*.
- 2. Repeat until no new variables get marked:
- 3. Mark any variable A where G has a rule $A \to U_1U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
- **4.** If the start variable is not marked, *accept*; otherwise, *reject*."

Thm: EQ_{CFG} is a decidable language?

$$EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$$

Recall: $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Used Symmetric Difference



$$L(C) = \emptyset \text{ iff } L(A) = L(B)$$

- where C = complement, union, intersection of machines A and B
- Can't do this for CFLs!
 - Intersection and complement are not closed for CFLs!!!

Intersection of CFLs is <u>Not</u> Closed!

• If closed, then intersection of these CFLs should be a CFL:

$$A = \{ \mathbf{a}^m \mathbf{b}^n \mathbf{c}^n | m, n \ge 0 \}$$

 $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^m | m, n \ge 0 \}$

- But $A \cap B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$
- Not a CFL!
 - See textbook example 2.36

Complement of a CFL is not Closed!

• If CFLs closed under complement:

if
$$G_1$$
 and G_2 context-free $\overline{L(G_1)}$ and $\overline{L(G_2)}$ context-free $\overline{L(G_1)} \cup \overline{L(G_1)}$ context-free $\overline{L(G_1)} \cup \overline{L(G_1)}$ context-free $L(G_1) \cap L(G_2)$ context-free

DeMorgan's Law!

Thm: EQ_{CFG} is a decidable language?

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

- No!
 - You cannot decide whether two grammars represent the same lang!
- It's not recognizable either!
 - (But we won't learn how to prove this until Chapter 5)

Decidability of CFGs Recap

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
 - Convert grammar to Chomsky Normal Form
 - Then check all possible derivations of length 2|w| 1 steps
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
 - Compute "reachability" of start variable from terminals
- $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$
 - We couldn't prove that this is decidable!
 - (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

- So TMs can express any "computation"
 - I.e., any (Python, Java, Racket, ...) program you write is a Turing Machine
- So why do we focus on TMs that process other machines?
- Because in CS420, we also want to study the <u>limits</u> of computation
 - And a good way to test the limit of a computational model is to see what it can compute about other computational models ...

decidable

context-free

regular

- So what are the limits of TMs? I.e., what's here?
 - Or out here?

Next time: A_{TM} is undecidable ???

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

 $A_{\rm TM}$ = the problem of computers simulating other computers, e.g.:

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

I.e., will machines take over the world?

Kinds of Functions (a fn maps Domain -> Range)

Injective

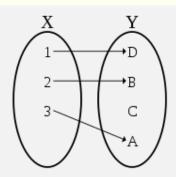
- A.k.a., "one-to-one"
- Every element in Domain has a unique mapping
- How to remember:
 - Domain is mapped "in" to the Range

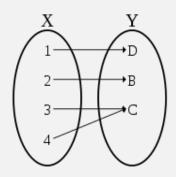
Surjective

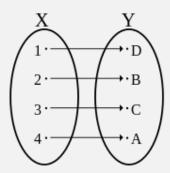
- A.k.a., "onto"
- Every element in RANGE is mapped to
- How to remember:
 - "Sur" = "over" (eg, survey); Domain is mapped "over" the Range

Bijective

- A.k.a., "correspondence" or "one-to-one correspondence"
- Is both injective and surjective
- Unique pairing of every element in Domain and Range







Countability

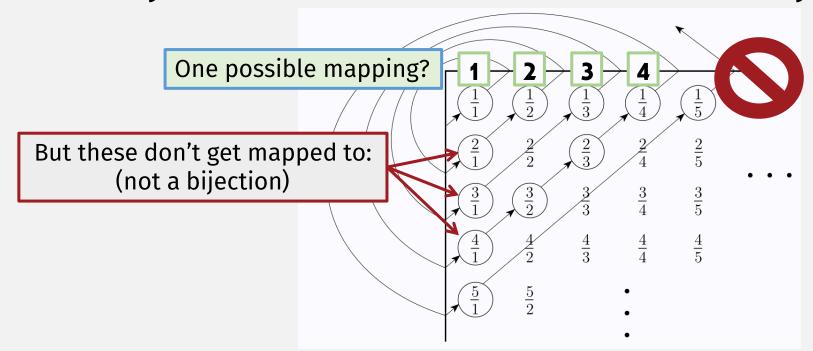
- A set is "countable" if it is:
 - Finite
 - Or, there exists a bijection between the set and the natural numbers
 - This set is then considered to have the <u>same size</u> as the set of natural numbers
 - This is called "countably infinite"

- The set of:
 - Natural numbers, or
 - Even numbers?
- They are the **same** size! Both are <u>countably infinite</u>

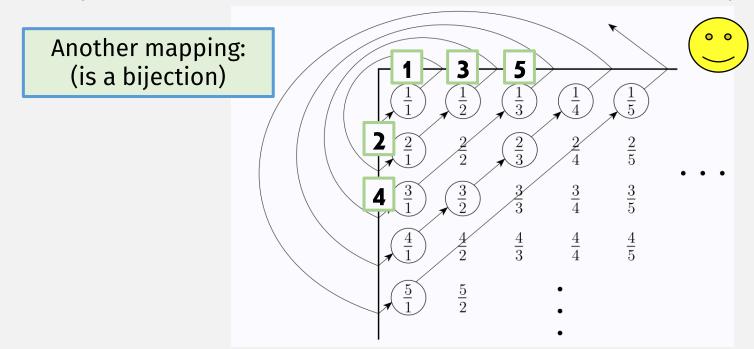
• Bijection:

$_$ n	f(n) = 2n
1	2
2	4
3	6
:	:

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $Q = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the **same** size! Both are <u>countably infinite</u>



- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $\mathcal{Q} = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the **same** size! Both are <u>countably infinite</u>



- The set of:
 - Natural numbers, or \mathcal{R}
 - · Real numbers?
- There are **more** real numbers. It is <u>uncountably infinite</u>.

Proof: next time!

Check-in Quiz 3/29

On gradescope