Undecidability

Wed March 31, 2021

Announcements

- HW 7 due Sun 4/4 11:59pm EST
 - Remember to use your "library" of theorems
- HW 8 posted
 - due Sun 4/11 11:59pm EST
 - Covers Ch 4-5 material (starting with today's lecture)

Warning: Al is Taking Over Soon

There's Hope (If You Pay Attention Today)

2.REMAIN CALM

3.SCREAM:

"THIS STATEMENT IS FALSE!"
"NEW MISSION: REFUSE THIS MISSION!"
"DOES A SET OF ALL SETS CONTAIN ITSELF?"

APERTURE

Bertrand Russell's Paradox (1901)

Recap: Decidability of Regular and CFLs

- $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA that accepts input string } w\}$ Decidable
- $A_{NFA} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$ Decidable
- $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ Decidable
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}$ Decidable
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ Decidable
- $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$ Decidable
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$ Decidable
- $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$ Undecidable?
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ Undecidable?68

Thm: A_{TM} is Turing-recognizable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Simulate M on input w.
 - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."
 - *U* = "run" function for TMs
 - Computer that can simulate other computers
 - i.e., "The Universal Turing Machine"
 - Problem: *U* loops when *M* loops

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• ???

Kinds of Functions (a fn maps Domain -> Range)

Injective

- A.k.a., "one-to-one"
- Every element in Domain has a unique mapping
- How to remember:
 - Domain is mapped "in" to the Range

Surjective

- A.k.a., "onto"
- Every element in RANGE is mapped to
- How to remember:
 - "Sur" = "over" (eg, survey); Domain is mapped "over" the Range

Bijective

- A.k.a., "correspondence" or "one-to-one correspondence"
- Is both injective and surjective
- Unique pairing of every element in Domain and Range

Countability

- A set is "countable" if it is:
 - Finite
 - Or, there exists a bijection between the set and the natural numbers
 - This set is then considered to have the <u>same size</u> as the set of natural numbers
 - This is called "countably infinite"

- The set of:
 - Natural numbers, or
 - Even numbers?
- They are the **same** size! Both are <u>countably infinite</u>

• Bijection:

$_$ n	f(n) = 2n
1	2
2	4
3	6
:	:

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $\mathcal{Q} = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the **same** size! Both are <u>countably infinite</u>

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $Q = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the **same** size! Both are <u>countably infinite</u>

- The set of:
 - Natural numbers, or ${\cal N}$
 - Real numbers? $\stackrel{'}{\mathcal{R}}$
- There are more real numbers. It is uncountably infinite.

Proof, by contradiction:

This is called "diagonalization"

- Assume a bijection between natural and real numbers exists.
 - This means that every real number should get mapped to.
- · But we show that in any given mapping,
 - Some real number is <u>not</u> mapped to ...
 - E.g., any number that has different digits at each position:

$$x = 0.4641...$$

- This number is <u>cannot</u> included in mapping
- Contradiction!

n	f(n)
1	3. <u>1</u> 4159
2	55.5 <mark>5</mark> 555
3	0.12 <mark>3</mark> 45
4	0.500 <u>0</u> 0
÷	:

e.g.:

Georg Cantor

- Invented set theory
- Came up with <u>countable infinity</u> in 1873
- And <u>uncountability</u>:
 - And how to show uncountability with "diagonalization" technique

A formative day for Georg Cantor.

Diagonalization with Turing Machines

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

Proof by contradiction:

• Assume A_{TM} is decidable. Then there exists a decider:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

• If *H* exists, then we can create:

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."
- But *D* does not exist! Contradiction! So assumption is false.

Turing Unrecognizable?

Is there anything out here? Turing-recognizable decidable context-free regular

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The **set of all languages** is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
- Lemma 2: The set of all TMs is countable

Therefore, some language is not recognized by a TM

Mapping a Language to a Binary Sequence

```
 \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{All Possible Strings} \\ \hline \textbf{Some Language} \\ (\text{subset of above}) \\ \hline \textbf{Its (unique)} \\ \hline \textbf{Binary Sequence} \\ \hline \end{array} \begin{array}{|c|c|c|c|c|c|c|} \hline \Sigma^* = \left\{ \begin{array}{c} \pmb{\varepsilon}, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \cdots \\ \hline 0, & & & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & & \\ \hline 0, & & & & & & & & & & \\ \hline 1, & & & & & & & & & & \\ 0, & & & & & & & & & & \\ \hline 0, & & & & & & & & & \\ \hline 1, & & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 1, & & & & & & & & \\ \hline 0, & & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 1, & & & & & & & \\ \hline 0, & & & & & & & \\ 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & & \\ \hline 0, & & & & & \\ 0, & & & & & \\ \hline 0, & &
```

Each digit represents one possible string:

- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- Lemma 1: The set of all languages is uncountable
 - Proof: Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences
 - > Now just prove set of infinite binary sequences is uncountable (hw8)
- Lemma 2: The set of all TMs is countable
 - Because every TM *M* can be encoded as a string *<M>*
 - And set of all strings is countable
- Therefore, some language is not recognized by a TM

Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- => If a language is decidable, then it is recognizable and co-recognizable
 - Decidable => Recognizable:
 - A decider is a recognizer, bc decidable langs are a subset of recognizable langs
 - Decidable => Co-Recognizable:
 - To create co-decider (which is also a co-recognizer) from a decider ...
 - ... switch reject/accept of all inputs

<= If a language is recognizable and co-recognizable, then it is decidable

<u>Thm</u>: Decidable ⇔ Recognizable & co-Recognizable

- => If a language is decidable, then it is recognizable and co-recognizable
 - Decidable => Recognizable:
 - A decider is a recognizer, bc decidable langs are a subset of recognizable langs
 - Decidable => Co-Recognizable:
 - To create co-decider (which is also a co-recognizer) from a decider ...
 - ... switch reject/accept of all inputs
- <= If a language is recognizable and co-recognizable, then it is decidable
 - Let *M1* = recognizer for the language,
 - And *M2* = recognizer for its complement
 - Decider M:
 - Run 1 step on *M1*,
 - Run 1 step on *M2*,
 - Repeat, until one machine accepts. If it's M1, accept. If it's M2, reject
 - One of M1 or M2 must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

• Because: recognizable & co-recognizable implies decidable

Is there anything out here? $\overline{A_{\mathsf{TM}}}$ A_{TM} Turing-recognizable decidable context-free regular

Next time: Easier Undecidability Proofs!

- We proved $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ undecidable by ...
- ... showing that it's decider could be used to implement an impossible "D" decider.
 - This was hard (need diagonalization)

```
\langle M_3 \rangle
                                 \langle M_4 \rangle
           reject
                      accept
                                 reject
accept
accept
          accept
                      accept
                                 accept
                                                   accept
           reject
reject
                      reject
                                 reject
                                                   reject
          accept
                                                   accept
```

- In other words, we **reduced** A_{TM} to the "D" problem.
- But now we can just reduce things to A_{TM} : much easier!

Next time: The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: $HALT_{TM}$ is undecidable

<u>Proof</u>, by contradiction:

• Assume $HALT_{TM}$ has decider R

• Use it to create decider for A_{TM} :

• ...

• But A_{TM} is undecidable!

Turing solves the halting problem, only to discover that the REAL problem with his machine is what to do with all the tape.

Check-in Quiz 3/31

On gradescope