Mapping Reducibility

Wednesday, April 7, 2021




Announcements

« HW 8 due Sun 4/1111:59pm EST

* HW 9 out
e Due Sun 4/18 11:59pm EST
 Ch5 material (starting today)




Last time: “Reduced” Atm to HALT v

Arm = {(M,w)| M isa TM and M accepts w}

: - - \ 4
Th M. HALTTM = undeCIdﬂble HALTtv = {(M,w)| M is a TM and M halts on input w}
Proof, by contradiction:

« Assume HALTtm has decider R; use to create Aty decider:
S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).<— Use R to first check if M will loop on w

2. If R rejects, reject. Then run M on w knowing it won’t loop
3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M has rejected, reject.”

 Contradiction: Aqy, Is undecidable and has no decider!
Today: Formalize “reduction” and “reducibilty”




Last time: REGULA R~y is undecidable

REGULARtm = {(M)| M isaTM and L(M) is a regular language}
Proof, by contradiction:
e Assume REGULAR+twm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

o| First, construct M, (see below, and next slide)

e Run R on input (M; Important: M, is never run; only used as an arg

o [t R accepts, accept; it R rejects, reject
\ A\

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w




Thm: REGULARTy is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

: Always accept strings 0n1»
]\/[2 = “On 1nput T L(M,) = nonregular, so far

1. If x has the form 01", accept.
2. If x does not have this form, run M on input w|and

accept 1t M accepts w.” | IfMacceptsw,
accept everything else,

if M does not accept w, M, accepts all strings (regular lang) so L(M,) = ¥* = regular

All strings }

o Want: L(M,) = D/
0%l « regular, if M accepts w

« nonregular, if M does not accept w

if M accepts w, M, accepts this non-regular lang




Reducing to non-Arm language

EQ+y = {(My, M3)| My and M5 are TMs and L(M,) = L(M>)}

Thm: EQ+p is undecidable
Proof, by contradiction: FErp = (M) MisaT™and L(M) = 0}
« Assume EQ+,, has decider R; use to create Z+y decider:

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. It R accepts, accept; it R rejects, reject.”



Reducing to non-Arm language

EQ+y = {{M;, My)| My and My are TMs and L(M;) = L(Ms)}

Thm: EQt)y is undecidable
PI’OOf, by contradiction: Erp = (1) MisaTMand L(M) = 0}
« Assume EQ+,, has decider R; use to create Z+y decider:

M), where M is a TM:
, where M is a TM that rejects all

2. If R accepts, accept; it R rejects, reject.”

e Contradiction: Ety is undecidable!




summary

* Apra = {(B,w)| B is a DFA that accepts input string w }
« Acre = {(G,w)| G is a CFG that generates string w }
m) o Atm = {(M,w)| M isa TM and M accepts w}

* Epra = {(A)| AisaDFAand L(A) = @} Observation:

_ Can we decide
* Ecre = {(G)| Gisa CFG and L(G) = 0} anything about

. Turing Machines,
=) ¢ Fry = {(M)| MisaTMand L(M) =0} | i.e., about programs?

* FEQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}

* EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}

) o EQqy = {(My, My)| M, and M, are TMs and L(M;) = L(My)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable



Can't decide anything about TMs?

* REGULAR, = {<M>| MisaTM and L(M) is a regular language} Undecidable
Hwo | « CONTEXTFREE )y = {<M> | MisaTMand L(M) is a CFL} Undecidable
* DECIDABLE;y, = {<M> | MisaTM and L(M) is a decidable language} Undecidable

* FINITE;y, = {<M>| MisaTM and L(M) is a finite language} Undecidable

Undecidable: Rice’s Theorem

HWo | «[ANYTHINGy, = {<M> | M is a TM and “something something” about L(M)}




Today: Computable Functions

* Needed to formalize the notion of “reducibility”



Flashback: Anga is a decidable language

Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider (i.e., “run” function) for AnFa :

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure for
' ' iven in Th 1.39. ST
this conversion given in Theorem 1.39 e said this NEA - DFA

S 3 ') A4 G syt (O ) , o, algorithm is a TM, but it
3. If M accepts, accept; otherwise, reject. doesn't accept/reject?

More generally, we've been saying
“programs = TMs”,
but programs do more than accept/reject?



Computable Functions

« A TM that, instead of accept/reject, “outputs” final tape contents

DEFINITION 5.17

A function f: ¥*—¥* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA -> NFA
 E.g., adding states, changing transitions, wrapping TM in TM, etc.




Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥*— ¥* where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

Arm = {{M,w)| M isa TM and M acce o HALTtv = {(M,w)| M isa TM and M halts on input w}

DEFINITION 5.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.




Thm: A+m1s mapping reducible to HALT twm

Arm = {(M,w)| M isa TM and M accepts w}

e To show: Atm < HALTtm HALTty = {{M,w)] ]\/is a TM and M halts on input w}
« Want: computable fn f : @rw) 2 (', w) where:
(M, w) € Atm if and only if (M’, w') € HALT 1\ f
The following machine F' computes a reduction f. f
o/(_—_\\o

F = “On input (M, w):
1. C.G:rnstli'uct thc: following machine M" Converts M to M’
M’ = “On input a:

M acceptsw 1. Run M on + DEFINITION 5.20
if and only if ' DU is mappi ' i
Y 2 IfM accepts, accept. _Ifanguage A is mapping redu.czble t.o linguagf B, written A <,,, B,
2 _ if there is a computable function f: ¥*— ¥*, where for every w,
M”halts on w 3. If M rejects, enter a loop.”
. - JECts, e we A< f(w) € B.

WA P .
2. Output {:lf : iL)- M’ is like M; exce pt It The function f is called the reduction from A to B.

always loops when it | periniTion 5.17
Outp ut new M’ doesn’t acce pt A function f: ¥*——X* is a computable function if some Turing

machine M, on every input w, halts with just f(w) on its tape.




How Is mapping reducibility useful?



Thm: If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

DEFINITION 5.20

Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥*— ¥*, where for every w,

we A< f(w) € B.

The function f is called the reduction from A to B.




COro: If A <., B and A is undecidable, then B is undecidable.

 Proof by contradiction.

« Assume B Is decidable.

* Then 4 is decidable (by the previous thm).

 Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.



Summary: Mapping Reducibility Theorems

- If A <,, B and B is decidable, then A is decidable.

Known Unknown

« If A <, B and A is undecidable, then B is undecidable.



Alternate Proof: The Halting Problem

HA LT+ 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

¢ ATM <m HALTTM

e Since Aty is undecidable, then HALT 1y is undecidable



Alternate Proof: EQ+y is undecidable

EQ+y = {(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Flashback: proof by contradiction:

* Assume EQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

DEFINITION 5.20

Language A is mapping reducible to language B, written A <, B,

Alternate proof: Show: Ery <m EQmy
[ CO m D uta b le fn f . <j\/f> 9 <J\/f} M1> if there is a computabl;f;n;t:f}(i:;?;*, where for every w,

The function f is called the reduction from A to B.




Reducing to complement: Bty is undecidable
Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction:

« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M just

described. M; = “On input 2:
. 1. Ifx # w, reject.
2. Run Ron mput <J\/Il> 2. If 2 = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.” .
If M accepts w, M, not in E,!

Alternate proof: computable fn: (M, w) - (M)« 77?7
* So this only reduces A1m to Frm

« Still proves FEry is undecidable
« HW9: show that undecidable langs are closed under complement




More Helpful Theorems

It A <., B and B is Turing-recognizable, then A is Turing-recognizable.

If A <, Band A isnot Turing-recognizable, then B is not Turing-recognizable.

» Same proofs as:
If A <,, B and B is decidable, then A is decidable.

If A <,, B and A is undecidable, then B is undecidable.



T h M : EQ+p 1s neither Turing-recognizable nor co-Turing-recognizable

EQ+y = {(My, M>)| M and M> are TMs and L(M;) = L(M2)}

1. EQ+p 1s not Turing-recognizable

Atwm

ATm

Turing-recognizable

decidable

context-free

ATM < EQ1pmA is not Turing-recognizable, th/Q) 1)y not Turing-recognizable.




Mapping Reducibility implies Mapping Red. of Complements

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥*— ¥* where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

DEFINITION 5.17

A function f: ¥*—— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.




Thm: EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+m = {{(M1, M2)| My and M3 are TMs and L(M;) = L(M>)}

1. EQ+p 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

. Or Computable fn:  Avm 2 EQy




Thm: EQ+y, is not ‘Turing-recognizable

EQ+v = {{(M1, M2)| My and M5 are TMs and L(M;) = L(M>2)}
* Create Computable fn: Aty 2 EQ+y,
. <]ij"I ’LU) - U\/Il& ]\/I2> M, and M, are TMs and L(M;) % L(Ms)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Mo.
M; = “On any iﬂpllt:<— Accepts nothing
1. Reject.”
M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”

2. Output (M, Ms).” . If M accepts w,

M, not equal to M,
« If M does not accept w,
M, equal to M, 53




T h M : EQ 1y 1s neither Turing-recognizable nor co-Turing-recognizable.
EQTM — {<M1} ﬂ/fg” ﬂ/fl and ﬂ/fz are TMs ‘c'lIld L(Ml) — LU\/IQ)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Aty = EQry,

* DONE!

2. EQ+y is not ¢O-Turing-recognizable
(A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

54



Prev: Q- is not Turing-recognizable

EQ+v = {{(M1, M2)| My and M5 are TMs and L(M;) = L(M>2)}
» Create Computable fn: Atm 2 EQ+y,
o ij w) > <j\/j'1j j\/I2> M, and M5 are TMs and L(M;) ¥ L(M,)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
M = “On any input: «— Accepts nothing
1. Reject.”
M5 = “On any input: <— Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Ol]t:_)llt <J\/Ilj ﬂ/Ig).”

DONE!



NOW: EQ+y is not Turing-recognizable

EQ+v = {{(M1, M2)| My and M5 are TMs and L(M;) = L(M>2)}

- Create Computable fn: Aty = EQ4y,

« (M,w) > (My, M) M and M, are TMs and L(M;) ¥ L(My)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and Ms.
My = “On any input: Accepts rething everything
1. Accept.”
M5 = “On any input: Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Ol]t:_)llt (I\/Il f\drg).”

DONE!



Unrecognizable Languages

EQTwm

Atwm

EQtwm



Check-in Quiz 4/7

On gradescope



