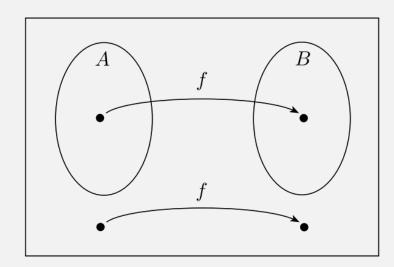
Mapping Reducibility

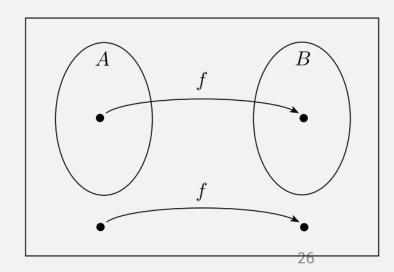
Wednesday, April 7, 2021



Announcements

• HW 8 due Sun 4/11 11:59pm EST

- HW 9 out
 - Due Sun 4/18 11:59pm EST
 - Ch5 material (starting today)



Last time: "Reduced" A_{TM} to $HALT_{TM}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

Thm: $HALT_{TM}$ is undecidable

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

<u>Proof</u>, by contradiction:

• Assume $HALT_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$. Use R to first check if M will loop on w
- 2. If R rejects, reject.

Then run *M* on *w* knowing it won't loop

- 3. If R accepts, simulate M on w until it halts.
- **4.** If M has accepted, accept; if M has rejected, reject."
- Contradiction: A_{TM} is undecidable and has no decider! Today: Formalize "reduction" and "reducibility"

Last time: REGULAR_{TM} is undecidable

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Proof, by contradiction:

• Assume $REGULAR_{TM}$ has decider R; use to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- First, construct M_2 (see below, and next slide)
- Run R on input $\langle M_{|2}^{\setminus} \leftarrow |$ Important: M_2 is never run; only used as an arg
- If R accepts, accept; if R rejects, reject

 $\underline{\text{Want}}: L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Thm: $REGULAR_{TM}$ is undecidable (continued)

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

 $M_2 =$ "On input x:

Always accept strings $0^{n}1^{n}$ $L(M_{2})$ = nonregular, so far

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M on input w and accept if M accepts w."

 If M accepts w,

if *M* does not accept *w*, *M*₂ accepts all strings (regular lang)

If M accepts w, accept everything else, so $L(M_2) = \Sigma^* = \text{regular}$

All strings

0ⁿ1ⁿ

Want: $L(M_2) =$

- regular, if M accepts w ■
- nonregular, if M does not accept w

if M accepts w, M_2 accepts this non-regular lang

Reducing to non- A_{TM} language

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Thm: EQ_{TM} is undecidable

<u>Proof</u>, by contradiction:

$$E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \ \text{is a TM and} \ L(M) = \emptyset \}$$

• Assume EQ_{TM} has decider R; use to create A_{TM} decider:

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Reducing to non- A_{TM} language

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Thm: EQ_{TM} is undecidable

<u>Proof</u>, by contradiction:

$$E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \ \text{is a TM and} \ L(M) = \emptyset \}$$

• Assume EQ_{TM} has decider R; use to create A_{TM} decider:

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."
- Contradiction: E_{TM} is undecidable!

Summary

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
 - $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
 - $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
 - $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
 - $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
- $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Decidable

Undecidable

Decidable

Observation:

Can we decide

anything about

Turing Machines,

i.e., about programs?

Decidable

Undecidable

Decidable

Undecidable

Undecidable 33

Can't decide anything about TMs?

• $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Undecidable

HW9

• $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$

Undecidable

• $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$

Undecidable

• $FINITE_{\mathsf{TM}} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

Undecidable

• ...

Undecidable:

Rice's Theorem

HW9

• $ANYTHING_{TM} = \{ < M > \mid M \text{ is a TM and "something something" about } L(M) \}_{14}$

Today: Computable Functions

Needed to formalize the notion of "reducibility"

Flashback: A_{NFA} is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$

Decider (i.e., "run" function) for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
- **2.** Run TM M on input $\langle C, w \rangle$.
- **3.** If *M* accepts, *accept*; otherwise, *reject*."

We said this NFA -> DFA algorithm is a TM, but it doesn't accept/reject?

More generally, we've been saying "programs = TMs", but programs do more than accept/reject?

Computable Functions

• A TM that, instead of accept/reject, "outputs" final tape contents

DEFINITION 5.17

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

- Example 1: All arithmetic operations
- Example 2: Converting between machines, like DFA -> NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

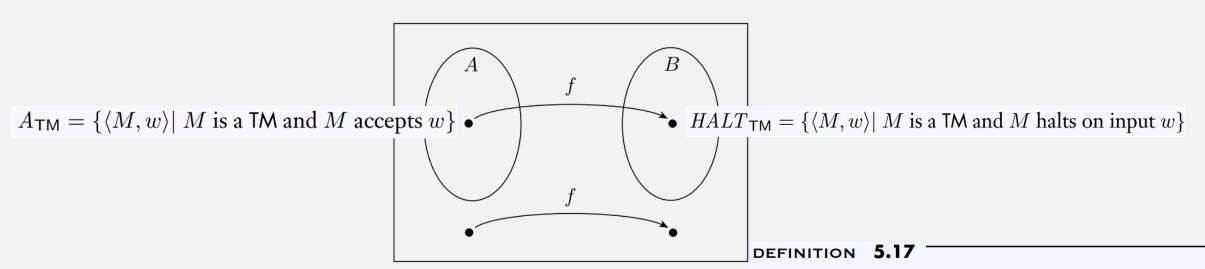
Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.



A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Thm: A_{TM} is mapping reducible to $HALT_{TM}$

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

• To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$

- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- Want: computable fn $f:\langle M,w\rangle \to \langle M',w'\rangle$ where:

$$\langle M, w \rangle \in A_{\mathsf{TM}}$$
 if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$

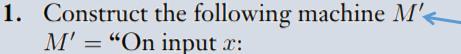
The following machine F computes a reduction f.

$$F =$$
 "On input $\langle M, w \rangle$:

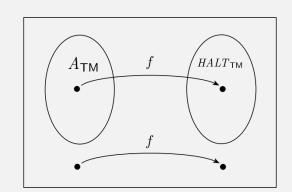
- M' = "On input x:
 - **1.** Run *M* on *x*.

 - **3.** If *M* rejects, enter a loop."
- **2.** Output $\langle M', w \rangle$."

M' is like M, except it always loops when it doesn't accept



2. If *M* accepts, *accept*.



Converts M to M'

DEFINITION 5.20

Language A is mapping reducible to language B, written $A \leq_{\rm m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

DEFINITION 5.17

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

M accepts *w* if and only if M' halts on w

Output new M'

How is mapping reducibility useful?

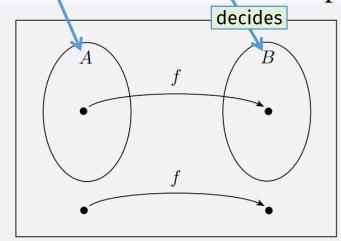
Thm: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Coro: If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Proof by contradiction.

• Assume B is decidable.

• Then A is decidable (by the previous thm).

• <u>Contradiction</u>: we already said *A* is undecidable

Summary: Mapping Reducibility Theorems

• If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Known

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Alternate Proof: The Halting Problem HALT_{TM} is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

• $A_{\mathsf{TM}} <_{\mathsf{m}} HALT_{\mathsf{TM}}$

• Since A_{TM} is undecidable, then $HALT_{\mathsf{TM}}$ is undecidable

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

<u>Flashback</u>: proof by contradiction:

• Assume EQ_{TM} has decider R; use to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

- S = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."

Alternate proof: Show: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$

• Computable fn $f: \langle M \rangle \rightarrow \langle M, M_1 \rangle$

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Reducing to complement: E_{TM} is undecidable

$$E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Proof, by contradiction:

• Assume E_{TM} has decider R; use to create A_{TM} decider:

```
S = "On input \langle M, w \rangle, an encoding of a TM M and a string w:
```

- 1. Use the description of M and w to construct the TM M_1 just
 - described.

- 2. Run R on input $\langle M_1 \rangle$.

 1. If $x \neq w$, reject.
 2. If x = w, run M on input w and accept if M does."
- 3. If R accepts, reject; if R rejects, accept."

If M accepts w, M_1 not in E_{TM} !

Alternate proof: computable fn: $\langle M, w \rangle \rightarrow \langle M_1 \rangle$???

- So this only reduces A_{TM} to $\overline{E_{\mathsf{TM}}}$
- Still proves E_{TM} is undecidable
 - HW9: show that undecidable langs are closed under complement

More Helpful Theorems

If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

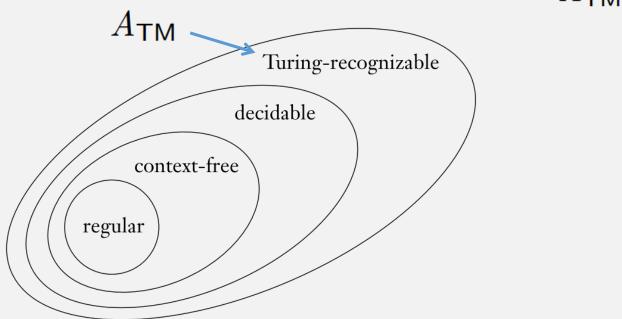
Same proofs as:

If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable



 $\overline{A_{\mathsf{TM}}}$

 $\overline{A_{\mathsf{TM}}} \leq_{\mathrm{m}} EQ_{\mathsf{TM}}A$ is not Turing-recognizable, th EQ_{TM} not Turing-recognizable.

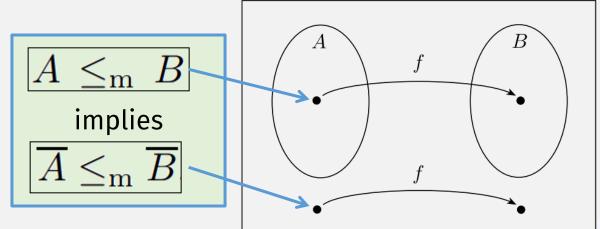
Mapping Reducibility implies Mapping Red. of Complements

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.



DEFINITION 5.17

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

- 1. EQ_{TM} is not Turing-recognizable Two Choices:
 - Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
 - Or Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$

Thm: EQ_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

$$M_1 =$$
 "On any input: \leftarrow Accepts nothing

1. Reject."

$$M_2$$
 = "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
- If M accepts w,
 M₁ not equal to M₂
 - If M does not accept w,
 M₁ equal to M₂

Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable. $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

- Create Computable fn: $\overline{A}_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$
- DONE!
- 2. $\overline{EQ}_{\mathsf{TM}}$ is not C_{A} -Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

Prev: EQ_{TM} is not Turing-recognizable

```
EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}
```

- Create Computable fn: $A_{\mathsf{TM}} \to \overline{EQ_{\mathsf{TM}}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

```
F = "On input \langle M, w \rangle, where M is a TM and w a string:
```

1. Construct the following two machines, M_1 and M_2 .

```
M_1 = "On any input: \leftarrow Accepts nothing
```

1. Reject."

$$M_2 =$$
 "On any input: \leftarrow Accepts nothing or everything

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."

NOW: \overline{EQ}_{TM} is not Turing-recognizable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

- Create Computable fn: $A_{TM} \rightarrow \widehat{EQ_{TM}}$
- $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

F = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Construct the following two machines, M_1 and M_2 .

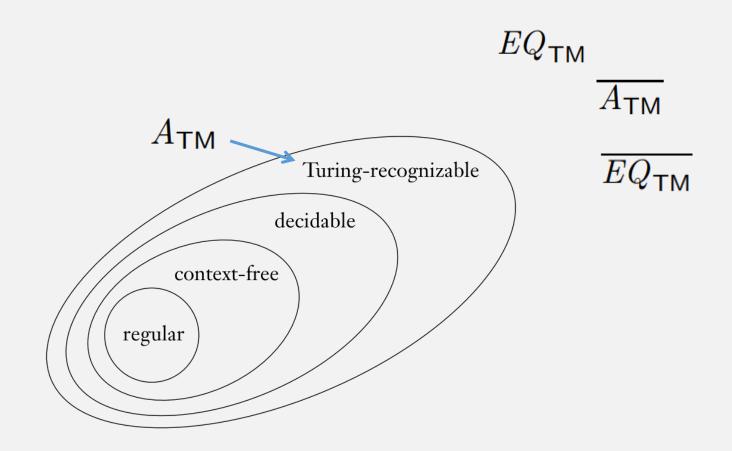
```
M_1 = "On any input: \leftarrow Accepts nothing everything
```

1. Accept."

$$M_2 =$$
 "On any input: \leftarrow Accepts nothing or everything

- **1.** Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."

Unrecognizable Languages



Check-in Quiz 4/7

On gradescope