CS420, Ch 6.1:

Turing Machines and Recursion
Mon, April 12, 2021

[WUY T VBVE NO FRIENDS, REASON #1739 |
UNIMPRESAWE MINDBLOWING EACTS

DID YOU KNOW TUKT

THE WORD “RECURSION” CONTAWNG
THE WORD “RECURSION
N /7SELF?

W OG0A .~
THATS AMAZ..
YOU'RE AN
PESSHOLE.

Announcements
« HWS8 past due
« HW9 due Sun 4/18 11:59pm EST

« Last Unit: Time Complexity
* P, NP, NP-Completeness ...
« Starting Wed 4/14

« Reminder: no class next Monday 4/19
 Patriot’s Day

‘\Mu\' 1T UWAWVE NO FRIENDS, REASON #1739
UNIMPREREGWE MINDBLOWWNG FRCTS

DD YOU KNOW THRAT
THE WORD “RECURSION” CONTAWNG
THE WORD “RECURSION

W O90A .~

THATS AMAZ.. |
YOU'RE AN

ACSHOLE. 4

Recursion In Programming

(define (n)
(1T (n)

(* n (factorial (n)))))

In most programming languages,
you can call a function recursively,
even before it's completely defined!

Turing Machines and Recursion

« We've been saying: “A Turing machine models programs.”

« Q: Is a recursive program modeled by a Turing machine?

A Turing machine is a 7-tuple, (Q,%, T, 5, o, Gaccept; Greject), Where
Q, X, I are all finite sets and

1. @ is the set of states,

o A: YeS! 2. X is the input alphabet not containing the blank symbol o,
S .« o 3. T is the tape alphabet, where u € I"'and X C T,
¢ BUt |t S nOt exp |.| Clt. 4, 5: Q xI'—@Q x T x {L, R} is the transition function,
) . . 5. qo € Q is the start state,
* In fact, it's a little complicated. ¢, cis e scceptsiate, and
° N eed to p rove It .. 7. Grejece € @ 1s the reject state, where Greject 7 Gaccept-

Where’s the recursion
in this definition???
» Today: The Recursion Theorem

The Recursion Theorem

Arm = {(M,w)| M isaTM and M accepts w}

* You can write a TM description like this:
Example | Prove Aty i1s undecidable, by contradiction:

Usage

assume that Turing machine H decides Aty

B = “On inpu
1. Obtain, via the

2. Run H on input (B, w).
3. Do the opposite of what H says. That s, accept it H rejects and

reject it H accepts.”

M,
My
M;
My

(M)

(M)

(M3)

(My)

(D)

accept
accept
reject
accept

reject

reject

accept

reject
accept

reject

accept
accept
reject
reject

accept

reject
accept
reject

accept

accept
accept
reject
accept

?

cursion theorem, own description (B).

This is the non-existent “D” machine,
the TM that does the opposite of itself,
defined using recursion!

How can a TM “obtain it's own description?”

How does a TM even know about “itself”
before it's completely defined?

A (Simpler) Coding Exercise

Your task:

« Write a program that, without using recursion, prints itself.
« Such a program obviously must have knowledge about “itself”

: _— function “function”
* An example, in English: “narameter” /
Z

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

_ . : “argument”
* A program that does this knows about “itself”, (thegfunction,

 but it does not explicitly use recursion! encoded as string)

Interlude: Lambda

» A = anonymous function value, e.g. (A (x) x)
« C++: []1(int x){ return x; }
e Java: (x) -> { return x; }
 Python: Llambda x : X

¢ JS: (x) => { return x; }

My Self-Reproducing Program

Print out two copies of the following, the second one in quotes:
]“Print out two copies of the|following, the second one in quotes:”

“function” “parameter”

“argument”

((A (the-following) (print2x-2ndquoted the-following))

)

(define (str)
(eI d BN | (could have inlined this)

~—

First copy Second copy (quoted)

Self-Reproducing Turing Machine [aeesr,.

/

/

AL B

Must output string

The following TM) computes g(w).

= “On input string w:

. Q
encodi ng of B \Constmct the following Turing machine P,.
P, = “On any input:

(:P(B}) l

1. Erase input.
2. Write w on the tape.
3. Halt.”

2. Output (P,).”

P_;. is TM that writes on tape

“argument” “tunction”

(TMs pass args by writing it on tape)

—> B = “On igput (M), where M is a portion of a TM:

(the function,
encoded as string)

“parameter”

Second copy (quoted) Compute q((M)) .
Combine the result with (M) to make a complete TM.

3. Print the description of this TM and halt.”

. . v) :
rint out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:”

11

Recursive Program that Prints Itself

SELF = “On any input:
1. Obtain, via the recursion theorem, own description (SELF').

This whole 2. Print (SELF)<
program is
“itself” Just this part
Is also “itself”

((A (the-following) (printﬁx-2ndquoted the-following))

« Our program contains “itself” even though it has no recursion!
« We don’t need explicit recursion to write recursive programs!

« Can we write a program that does something other than print “itself”?

Other nonrecursive programs using “itself”

« Program that prints “itself”:
((A (the-following) (print2x-2ndquoted the-following))

)

 Program that runs “itself” repeatedly (ie, it loops):

Call arg fn with itself as arg

((A (xX) (x x) Need this extra

(A (x) (x x))) Don't convert arg to string lambda bc we
: : want to call £ first
* Loop, but call some other function f each time: before looping

(A (T) (A (F)

((A (x) (f (x x))) S (A (x) (F (A (v) ((x x) v))))
(A (x) (f (x x))))) (A (x) (f (A (v) ((x x) v))))))

 None of these programs use explicit recursion! Y combinator

The Recursion Theorem, Formally

Recursion theorem Let 7" be a Turing machine that computes a function
t: 3* x ¥*—¥*. There i1s a Turing machine R that computes a function
r: X*— ¥* where for every w,

r(w) = t((R),w).

In English:
« If you want TM R that includes a step “obtain own description” ...

e ... Instead create TM T with an extra “itself” argument ...

e ...then construct Rfrom T

Recursion Theorem, A Concrete Example

Recursion
n) :: R Theorem
. says you
* If you want: can
* Recursive fn n (factorial (n))))) convert
But how??
(define (ITSELF n) ;; T
* Instead create: (if (n)

« Non-recursive fn (

n (ITSELF (n)))))

Recursion Theorem, Proof

e To converta “T" to “R”:

A

5]

(:P(BT})

-

control for R

1. Construct A = program constructing <BT>, and
2. Pass result to B (from before),

3. which passes “itself” to T

« Compare with SELF:

Print out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:f

17

Recursion Theorem Proof: Coding Demo

* Program that passes “itself” to another function:
Y combinator

Pass to

e Function|that needs “itself”

(define ™ ITSELF n)

(if (n)

(* n (ITSELF (n)))))

Fixed Points

« Avalue x is a fixed point of a function fif f{x) =x

Recursion Theorem and Fixed Points

THEOREM 6.8 ...

Let ¢: 3X*—3* be a computable function. Then there is a Turing machine
F for which ¢((F')) describes a Turing machine equivalent to F. Here we’ll
assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.

In this theorem, ¢ plays the role of the transformation, and F' is the fixed point.

PROOF Let F be the following Turing machine.

F = “On input w:
1. Obtain, via the recursion theorem, own description (F).
2. Compute t((F)) to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F) and ¢t((F)) = (G) describe equivalent Turing machines because
F simulates G.

* |.e., Recursion theorem says:
« “every TM that computes on TMs has a fixed point”
 As code: “every function on functions has a fixed point”

Y Combinator

 mk-recursive-fn =a “fixed point finder”

(define mk-recursive-fn
(A (T)

((A (x) (T
(A (x) (T

Summary: Where “Recursion” Comes From

A Turing machine is a 7-tuple, (Q,X, T, d, qo, Gaccepts reject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € 'and ¥ C T,

§: Q xI'—Q x I' x {L, R} is the transition function,

qo € @ is the start state,

* TMs are powerful enough to:
1. Construct other TMs
2. Simulate other TMs

Gaccept € @ 1s the accept state, and

e W

Greject € @ 1s the reject state, where Greject 7 Gaccept-

Where's the recursion???

« That's enough to achieve recursion!

—~ PROBLEMS
WITH
REC\);QS\ON

J’P‘_&Se Loke one |

Check-in Quiz 4/12

On gradescope

