CS420, Ch7 Time Complexity

Wed April 14, 2021

Smbc-comics.com

Announcements

- Reminder: No class next Monday 4/19!
- HW9
 - Due date extended to Tues 4/20 11:59pm EST
- HW10 coming soon!
- <u>FAQ</u>: How many HWs left?
 - Total: 12 HWs
- FAQ: What's my grade?
 - All your scores are visible in Gradescope
 - Letter grade brackets: 90s -> A, 80s, -> B, etc.
 - See: CS420 Spring 2021 Course Page -> Course Policies -> Grading
 - Final grade, incl. dropped hw, particip, not calculated until end of semester

Smbc-comics.com

Flashback: Single-tape TM "equiv to" Nondet. TM

Flashback: Single-tape TM "equiv to" Nondet. TM

- Deterministic TM simulating nondeterministic TM:
 - 1. Number the nodes at each step
 - 2. Deterministically check every path, in breadth-first order (restart at top each time)

--- CS420 Spring 2021 student

Exactly how inefficient is it???

- 1-1
- 1-2
- 1-1-1
- 1-1-2
- and so on
- Now we'll start to count "# of steps"
- 3. Accept if accepting config found

Nondeterministic computation

To be continued ...

accept

Simpler Example: $A = \{0^k 1^k | k \ge 0\}$

$M_1 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- **2.** Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

- ➤TM Line 1:
 - n steps to scan + n steps to return to beginning = 2n steps

Simpler Example: $A = \{0^k 1^k | k \ge 0\}$

$M_1 =$ "On input string w:

- 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

- TM Line 1:
 - n steps to scan + n steps to return to beginning = 2n steps
- ► Lines 2 and 3 (loop):
 - Each iter: n/2 steps to find "1" + n/2 steps to return = n steps
 - Num iters: Each scan crosses off 2 chars, so at most n/2 scans
 - Total = each iter times num iters = $n(n/2) = n^2/2$ steps

Simpler Example: $A = \{0^k 1^k | k \ge 0\}$

M_1 = "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

Number of steps (worst case), n = length of input:

- TM Line 1:
 - n steps to scan + n steps to return to beginning = 2n steps
- Lines 2 and 3 (loop):
 - Each iter: n/2 steps to find "1" + n/2 steps to return = n steps
 - Num iters: Each scan crosses off 2 chars, so at most n/2 scans
 - Total = each iter times num iters = $n(n/2) = n^2/2$ steps

≻Line 4:

- <u>n steps</u> to scan input one more time
- Total: $2n + n^2/2 + n = n^2/2 + 3n$ steps

Interlude: Polynomials

<u>Definition</u>: Time Complexity

NOTE: *n* has no units, it's only roughly "length" of the input

DEFINITION 7.1

But *n* can be not only #characters, but also #states, #nodes, etc.

We can use any of things for *n*, bc they're <u>correlated</u>

with input length

et M be a deterministic Turing machine that halts on all inuts. The **running time** or **time complexity** of M is the function $: \mathcal{N} \longrightarrow \mathcal{N}, \text{ where } f(n) \text{ is the maximum number of steps that } M$ uses on any input of length n. If f(n) is the running time of M,
say that M runs in time f(n) and that M is an f(n) time Turmachine. Customarily we use n to represent the length of the
ut.

- Machine M_1 that decides $A = \{0^k 1^k | k \geq 0\}$
 - Running Time: n²/2+3n

 $M_1 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

Interlude: Asymptotic Analysis

- Total: $n^2 + 3n$
 - If n = 1
 - $n^2 = 1$
 - 3n = 3
 - <u>Total</u> = 4
 - If n = 10
 - $n^2 = 100$
 - 3n = 30
 - Total = 130
 - If n = 100
 - $n^2 = 10000$
 - 3n = 300
 - <u>Total</u> = 10300
 - If n = 1000
 - $n^2 = 1000000$
 - 3n = 3000
 - <u>Total</u> = 1003000
- $n^2 + 3n \approx n^2$ as n gets large
- asymptotic analysis only cares about large *n*

<u>Definition</u>: Big-O Notation

DEFINITION 7.2

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$, $f(n) \le c g(n)$.

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

- In English: Keep only highest order term, drop all coefficients
- Machine M_1 that decides $A = \{0^k \mathbf{1}^k | k \geq 0\}$
 - Is an $n^2 + 3n$ time Turing machine
 - Is an $O(\mathbf{n}^2)$ time Turing machine
 - Has asymptotic upper bound $O(\mathbf{n}^2)$

<u>Definition</u>: Small-o Notation (less used)

DEFINITION 7.5

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In other words, f(n) = o(g(n)) means that for any real number c > 0, a number n_0 exists, where f(n) < c g(n) for all $n \ge n_0$.

Analogy:

• Big-0: <= :: small-o: <

DEFINITION 7.2

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

$$f(n) \le c g(n).$$

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

Big-O arithmetic

$$\bullet O(\mathbf{n}^2) + O(\mathbf{n}^2)$$
$$= O(\mathbf{n}^2)$$

•
$$O(\mathbf{n}^2) + O(\mathbf{n})$$

= $O(\mathbf{n}^2)$

<u>Definition</u>: Time Complexity Classes

DEFINITION 7.7

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the **time complexity class**, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

TMs have a <u>running time</u>, languages have a <u>complexity class</u>

- Machine M_1 that decides $A = \{0^k 1^k | k \ge 0\}$
 - Is an $O(\mathbf{n}^2)$ running time Turing machine
 - So A is in $TIME(n^2)$

 $M_2 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- 4. Scan again across the tape crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

 M_1 = "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat if both 0s and 1s remain on the tape:
- 3. Scan across the tape, crossing off a single 0 and a single 1.
- **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

 $M_2 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- **2.** Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- 4. Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

- **≻**Line 1:
 - n steps to scan + n steps to return to beginning = O(n) steps

 $M_2 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- 4. Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

- <u>Line 1:</u>
 - n steps to scan + n steps to return to beginning = O(n) steps
- ➤ Lines 2, 3, 4 (loop):
 - Each iter: a scan takes $O(\mathbf{n})$ steps
 - Num iters: Each iter crosses off <u>half</u> the chars, so at most $O(\log n)$ scans
 - Total: $O(n) * O(\log n) = O(n \log n)$ steps

$M_2 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- **2.** Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- 4. Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- **5.** If no 0s and no 1s remain on the tape, *accept*. Otherwise, *reject*."

- <u>Line 1:</u>
 - n steps to scan + n steps to return to beginning = O(n) steps
- Lines 2, 3, 4 (loop):
 - Each iter: a scan takes $O(\mathbf{n})$ steps
 - Num iters: Each iter crosses off <u>half</u> the chars, so at most $O(\log n)$ scans
 - Total: $O(n) * O(\log n) = O(n \log n)$ steps
- ➤ Line 5:
 - $> O(\mathbf{n})$ steps to scan input one more time

$M_2 =$ "On input string w:

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- **2.** Repeat as long as some 0s and some 1s remain on the tape:
- 3. Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
- 4. Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

- <u>Line 1:</u>
 - n steps to scan + n steps to return to beginning = O(n) steps
- Lines 2, 3, 4 (loop):
 - Each iter: a scan takes $O(\mathbf{n})$ steps
 - Num iters: Each iter crosses off <u>half</u> the chars, so at most $O(\log n)$ scans
 - Total: $O(n) * O(\log n) = O(n \log n)$ steps
- <u>Line 5:</u>
 - $O(\mathbf{n})$ steps to scan input one more time
- Total: $O(n) + O(n \log n) + O(n) = O(n \log n)$ steps

Interlude: Logarithms

•
$$2^{x} = y$$

- $\log_2 y = x$
- $\log_2 n = O(\log n)$
 - "divide and conquer" algorithms = $O(\log n)$
 - E.g., binary search
- In computer science, base-2 is the only base!

Terminology: Categories of Bounds

- Exponential time
 - $O(2^{n^c})$, for c > 0 (always base 2)
- Polynomial time
 - $O(n^c)$, for c > 0
- Quadratic time (special case of polynomial time)
 - $O(\mathbf{n}^2)$
- Linear time (special case of polynomial time)
 - O(n)
- Log time
 - $O(\log n)$

Multi-tape vs Single-tape TMs: # of Steps

- For single-tape TM to simulate 1 step of multi-tape:
 - Scan to find all "heads" = O(length of all M's tapes)
 - "Execute" transition at all the heads = O(length of all M's tapes)
- # single-tape steps to simulate 1 multitape step (worst case)
 - = O(length of all M's tapes)
 - = O(t(n)) (If M spends all its steps expanding its tapes)
- Total steps (single tape): O(t(n)) per step × t(n) steps = $O(t^2(n))$

Single-tape TM vs Nondet. TM: # of steps

- Deterministic TM simulating nondeterministic TM:
 - Number the nodes at each step
 - Deterministically check every path, in breadth-first order (restart at top each time)

 - 1-1
 - 1-2
 - 1-1-1
 - 1-1-2
 - and so on
- Exactly how inefficient is it???

--- CS420 Spring 2021 student

- Now we'll start to count "# of steps"
- Accept if accepting config found

Nondeterministic computation

To be continued ...

accept

Single-tape TM vs Nondet. TM: # of steps

$2^{O(t(n))}$ time

- Deterministic TM simulating nondeterministic TM: t(n) time
 - Number the nodes at each step
 - Deterministically check every path, in breadth-first order (restart at top each time)
 - 1
 - 1-1
 - 1-2
 - 1-1-1
 - 1-1-2
 - and so on
 - Accept if accepting config found

Nondeterministic computation

Summary

- If multi-tape TM: t(n) time
- Then equivalent single-tape TM: $O(t^2(n))$
 - Quadratically slower
- If non-deterministic TM: t(n) time
- Then equivalent single-tape TM: $2^{O(t(n))}$
 - Exponentially slower

Next time: Specific Complexity Classes

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

- Corresponds to "realistically" solvable problems
- In this class:
 - Problems in P = "solvable"
 - Problems outside P = "unsolvable"
 - These are usually "brute force" solutions that "try all possible inputs"

Next time: A Graph Theorem: $PATH \in P$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• To prove that a language is in P ...

- ... we must construct a polynomial time algorithm deciding the lang
- A non-polynomial (i.e., exponential, brute force) algorithm:
 - Check all possible paths, and see if any connect s to t

Interlude: Graphs (see Chapter 0)

- Edge defined by two nodes (order doesn't matter)
- Formally, a graph = (V, E)
 - V = set of nodes, E = set of edges

Interlude: Graph Encodings

```
({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})
```

- In graph algorithms, "length of input" n = number of vertices
 - and sometimes number of edges
 - Not number of chars
 - So steps counted in terms of number of vertices
- Given a graph G = (V, E) with n = |V| vertices
- Max edges = $O(|V|^2) = O(\mathbf{n}^2)$
- So # vertices + edges is polynomial in length of input
- Algorithm runs in time polynomial in the number of vertices \Leftrightarrow algorithm runs in time polynomial in the length of input

Interlude: Weighted Graphs

Interlude: Subgraphs

Interlude: Paths and other Graph Things

- Path
 - A sequence of nodes connected by edges
- Cycle
 - A path that starts/ends at the same node
- Connected graph
 - Every two nodes has a path
- Tree
 - A connected graph with no cycles

Interlude: Directed Graphs

Possible **string encoding** given to TMs:

 $(\{1,2,3,4,5,6\}, \{(1,2), (1,5), (2,1), (2,4), (5,4), (5,6), (6,1), (6,3)\})$

- Directed graph = (V, E)
 - V = set of nodes, E = set of edges
- An edge is a pair of nodes (u,v), order now matters
 - u = "from" node, v = "to" node

Each pair of nodes included twice

- A "degree" of a node is the number of edges connected to the node
 - Nodes in a directed graph have both indegree and outdegree

Check-in Quiz 4/14

On gradescope