CS420, Ch7
Time Complexity

Wed April 14, 2021

AN ENGINEER, A PUYSICIST,
AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MONING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE ISN'T ENQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

T BEEN AT THIS 30 YEARS,

T CAN LOOK AT ANY AMOUNT
QOF STOFF AND INSTANTLY
TELL YA IF IT CAN FIT IN THE
MOVING BINS,

IT'S OBVIQUS |IT CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

UO

THE PHYSICIST GAYS..

IT'S OBVIOUS IT CAN FIT. IF

IT WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOQULD BE THE SIZE OF A
BASEBALL.

THE MATHEMATICIAN SAYS..

PLEASE DON'T
HACK my EMAILY

Smbc -comics.com



Announcements

Reminder: No class next Monday 4/19!

HW9
« Due date extended to Tues 4/20 11:59pm EST

HW10 coming soon!

FAQ: How many HWs left?
» Total: 12 HWs

« FAQ: What's my grade?
« All your scores are visible in Gradescope
» Letter grade brackets: 90s -> A, 80s, -> B, etc.

« See: CS420 Spring 2021 Course Page -> Course Policies -> Grading

AN ENGINEER, A PHYSICIST,
AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MONING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE ISN'T ENQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

T BEEN AT THIS 30 YEARS,

T CAN LOOK AT ANY AMOUNT
OF STUFF AND INSTANTLY
TELL YA IF IT CAN FIT IN THE
MOVING BINS,

</
THE PUYSICIST SAYS..

IT'S OBVIQUS |IT CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

g

IT'S OBVIOUS IT CAN FIT. IF
IT WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WQULD 8€ THE &IZE OF A
BASEBALL.

THE MATHEMATICIAN SAYS..

PLEASE DON'T
HACK my EMAILY

« Final grade, incl. dropped hw, particip, not calculated until end of semester

Smbc -comics.com



Flashback: Single-tape TM “equiv to” Nondet. TM

THUS, FOR ANY NONDETER MINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,... THE RUNNING TIME IS Ocpn)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN, T JUST
WANTED To LEARN
HoW TO PROGRAM
VIDEO GAMES,




Flashback: Single-tape TM “equiv to” Nondet. TM

Nondeterministic
« Deterministic TM simulating computation
nondeterministic TM:
1. Number the nodes at each step
2. Deterministically check every path, ’ \\*

In breadth-first order (restart at top each time) 1 i

° 1

. 1-1 “This is the most inefficient algorithm ever” \'

.« 122 -- CS420 Spring 2021 student ( 1

* 1-1-1 PSS eject e

, Exactly how inefficient is 1t???

. 1-1- :

« and so on | Now we’ll start to count “# of steps” ‘l
3. Accept if accepting config found

* accept

To be continued ...




Simpler Example: A = {0*1*| k > 0}

My = “On input string w: —
1. Scan across the tape and reject if a 0 is found to the right of a 1. 2L rre oot
2. Repeatif both 0s and 1s remain on the tape: PR R o0 on .
3. Scan across the tape, crossing off a single 0 and a single 1. = PLOOOxILO000 .
4. 1If Os still remain after all the 1s have been crossed off, or if 1s le LOO00Ox11000u...
still remain after all the Os have been crossed off, reject. Other- xx1000x11000u...
wise, if neither Os nor 1s remain on the tape, accept.” KXXRXXEXXXXEXD ..

accept

Number of steps (worst case), n = length of input:

>TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps




Simpler Example: A = {0*1*

My = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeatif both Os and 1s remain on the tape:

k> 0)

Ty
011000011000wu ...

oy
x11000011000u ...

—
- - . 11000 11000u ...
3. Scan across the tape, crossing off a single 0 and a single 1. : * -

-
4. If Os still remain after all the 1s have been crossed off, or if 1s le LOOOx11000u...
still remain after all the Os have been crossed off, reject. Other- xx1000x11000u...
wise, if neither Os nor 1s remain on the tape, accept.” KXXRXXEXXXXEXD ..
o accept
Number of steps (worst case), n = length of input:

e TM Line 1:
* n steps to scan + n steps to return to beginning = 2n steps

>Lines 2 and 3 (loop):
« Each iter: n/2 steps to find “1” + n/2 steps to return = n steps
« Num iters: Each scan crosses off 2 chars, so at most n/2 scans
« Total = each iter times num iters = n (n/2) = n%?/2 steps




Simpler Example: A = {0*1*

M,

“On input string w:

1.

2.
3.
4.

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both Os and 1s remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

Number of steps (worst case), n = length of input:

e TM Line 1:

- n steps to scan + n steps to return to beginning = 2n steps

e Lines 2 and 3 (loop):

« Each iter: n/2 steps to find “1” + n/2 steps to return = n steps
« Num iters: Each scan crosses off 2 chars, so at most n/2 scans

« Total = each iter times num iters = n (n/2) = n%?/2 steps

>Line 4:

- n steps to scan input one more time

e Total: 2Zn + n?/2 + n = n?/2 + 3n steps

k> 0)

T
011000011000uw ...
oy
x11000011000uw ...

T
x11000x11000w ...
Ty

x11000x11000w ...

;4;i 1000x11000u ...

X XXXXXXXXXXXu ...

accept



Interlude: Polynomials

order/degree coefficients

Highest order term —>6_‘n,3 —+ 2_?12 -+ 20_?1 + 4_5

A =

terms




Definition: Time Complexity

NOTE: n has no units,
roughly “length” of the input

it's only

DEFTNTTION 7.1

But n can be not

only #characters,

but also #states,
ttnodes, etc.

et M be a deterministic Turing machine that halts on all in-
uts. The running time or time complexity of M is the function
: N— N, where f(n) is the maximum number of steps that M

uses on any input of length n. If f(n) is the running time of M,

We can use any of
things for n, bc
they're correlated
with input length

say that M runs in time f(n) and that M is an f(n) time Tur-
machine. Customarily we use n to represent the length of the
ut.

- Machine M, that decides A = {0%1*| k > 0}

e Running Time: n?/2+3n

My = “On input string w:
Scan across the tape and reject if a 0 is found to the right of a 1.

Repeat if both 0s and 1s remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1.
If Os still remain after all the 1s have been crossed off, or if 1s
still remain after all the 0s have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

NSO ST (S




Interlude: Asymptotic Analysis

e Total: n2 +3n
e Ifn=1

e n¢=1

e 3n=30
« Total=130
* Ifn=100
* n?=10000
* 3n=300
» Total=10300
* Ifn=1000
* n?=1000000
« 3n=3000
« Total=1003000

* n? +3n = n%as n gets large
« asymptotic analysis only cares about large n



Definition: Big-0 Notation

DEFINITION 7.2

Let f and g be functions f, g: N'— R ™. Say that f(n) = O(g(n))

if positive integers ¢ and n exist such that for every integer n > ny,
f(n) <cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

* In English: Keep only highest order term, drop all coefficients

- Machine M, that decides A = {0*1*| k > 0}
 Is an nZ +3n time Turing machine
* Is an O(n?) time Turing machine
« Has asymptotic upper bound 0(n?)



Definition: Small-o Notation (less used)

DEFINITION 7.5

Let f and g be functions f, g: N— R ™. Say that f(n) = o(g(n))
if

fw)
nlggc g(n) =&

In other words, f(n) = o(g(n)) means that for any real number
¢ > 0, a number n exists, where f(n) < cg(n) for all n > ny.

* Analogy: DEFINITION 7.2
¢ B|g'0 <=1 Small'O . < Let f and g be functions f,g: N— R™. Say that f(n) = O(g(n))

if positive integers c and ng exist such that for every integer n > ny,
f(n) < cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound for
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.




Big-0 arithmetic

* 0(n?) + O(n?)
= 0(n?)

* 0(n?) + O(m)
- 0(n?)



Definition: Time Complexity Classes

DEFINITION 7.7

Let t: N—R™" be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(¢(n)) time Turing machine.

TMs have a running time,
languages have a complexity class

- Machine M, that decides A = {0¥1*| k > 0}
* Is an O(n?) running time Turing machine
* S0 A Is In TIME(n?)



A Faster Machine? A = {0*1%| k > 0}

M3 = “On input string w:

M; = “On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1. 1, S mareiie e el g Hin @ s el e e dikoeia
2. Repeat as long as some Os and some 1s remain on the tape: 2. Repeat if both 0s and 1s remain on the tape:
3. Scan across the tape, checking whether the total number of 3. Scan across the tape, crossing off a single 0 and a single 1.
0s and 1s remaining is even or odd. If it is odd, reject. 4. If Os still remain after all the 1s have been crossed off, or if 1s
. X ' . still remain after all the Os have been crossed off, reject. Other-
4. Scan again across the tape, crossing off every other 0 starting wise, if neither 0s nor 1s remain on the tape, accept.”

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:




A Faster Machine? A = {0*1%| k > 0}

M3 = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some Os and some 1s remain on the tape:

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

>Line 1
 n steps to scan + n steps to return to beginning = O(n) steps




A Faster Machine? A = {0~1F

M; = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

k> 0)

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.

5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:
e Line 1

 n steps to scan + n steps to return to beginning = O(n) steps
>Lines 2, 3, 4 (loop):

« Each iter: a scan takes O(n) steps

« Num iters: Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps




A Faster Machine? A = {0~1F

M; = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

k> 0)

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.

5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:
e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps
e Lines 2, 3, 4 (loop):
« Each iter: a scan takes O(n) steps
« Num iters: Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps
»Line 5:
»0(n) steps to scan input one more time




A Faster Machine? A = {0~1F

M; = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some 0s and some 1s remain on the tape:

k> 0)

3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.
4. Scan again across the tape, crossing off every other 0 starting

with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Number of steps (worst case), n = length of input:

e Line 1
 n steps to scan + n steps to return to beginning = O(n) steps
e Lines 2, 3, 4 (loop):
« Each iter: a scan takes O(n) steps
« Num iters: Each iter crosses off half the chars, so at most O(log n) scans
« Total: O(n) * O(log n) = O(n log n) steps
e Line 5:
« O(n) steps to scan input one more time

e Total: O(n) + O(nlogn) + O(n) = O(n log n) steps




Interlude: Logarithms

02X=y

* log,y =x

* log,n = O(log n)
» “divide and conquer” algorithms = O(log n)
 E.g., binary search

* In computer science, base-2 is the only base!



Terminology: Categories of Bounds

« Exponential time
* 0(2""9), for ¢ > 0 (always base 2)

* Polynomial time
e O(n¢), forc>0
e Quadratic time (special case of polynomial time)
* O(n?)
e Linear time (special case of polynomial time)
* O(n)
* Log time
* O(logn)



Multi-tape vs Single-tape TMs:

0|1(0]1

0

(o e

t(n) ttme | 5y

O (n))|time [g]

— d(d|da (U] ...

 For single-tape TM to simulate 1 step of multi-tape:
» Scan to find all “heads” = O(length of all M’s tapes)

of Steps

» “Execute” transition at all the heads = O(length of all M's tapes)
- # single-tape steps to simulate 1 multitape step (worst case)

« = O(length of all M’s tapes)
* = 0(t(n)) (If M spends all its steps expanding its tapes)

- Total steps (single tape): O(t(n)) per step x t(n) steps = O(t2(n))




Single-tape TM vs Nondet. TM: # of steps

Nondeterministic
« Deterministic TM simulating computation
nondeterministic TM: :
 Number the nodes at each step v/ \,
» Deterministically check every path, in fl\, ’ \\‘
breadth-first order (restart at top each time) 1 2 3 &
° 1 .
. 1-1 “This is the most inefficient algorithm ever” '.{ \.'
. 12 --- CS420 Spring 2021 student ( 1
« 1-1-1 e reject e
. Exactly how inefficient iIs 11?77
« and so on | Now we’ll start to count “# of steps” ‘1
« Accept if accepting config found

To be continued ... " accept




Single-tape TM vs Nondet. TM: # of steps

20(t(1))time Nondeterministic
« Deterministic TM simulating computation
nondeterministic TMs——¢(n) time :
 Number the nodes at each step v/ \,
« Deterministically check every path, in f;\, ’ \\‘

breadth-first order (restart at top each time) 1 2 3 &

s ()

12 e
e 1-1-1 reject e

e 1-1-2 Max branching -

. and so on (number of paths) .

- Accept if accepting config found b = branching per level

pt(n) — 90(t(n))

Max height
(longest path)
t(n)
* |accept



summary

e If multi-tape TM: t(n) time

« Then equivalent single-tape TM: O(t*(n))
* Quadratically slower

* If non-deterministic TM: t(n) time

* Then equivalent single-tape TM: 20(t(n))
« Exponentially slower



Next time: Specific Complexity Classes

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n").
k

 Corresponds to “realistically” solvable problems

* In this class:
e Problems in P = “solvable”

* Problems outside P = “unsolvable”
« These are usually “brute force” solutions that “try all possible inputs”



Next time: A Graph Theorem: PATH € P

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}

« To prove that a language i1sin P ...

e ... we must construct a polynomial time algorithm deciding the lang

» A non-polynomial (i.e., exponential, brute force) algorithm:
« Check all possible paths, and see if any connectsto t



Interlude: Graphs (see Chapter 0)

edges

(undirected) Wh nodes / vertices

We'll assume we have some string encoding, <G>,
given to TMs, e.g..

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

» Edge defined by two nodes (order doesn’t matter)

* Formally, a graph = (1} E)
« I/ =set of nodes, E = set of edges



Interlude: Graph Encodings

({1123"“135}* {(1.2), (2“3) (31 4)* (“L 5)* (51)})

* In graph algorithms, “length of input” n = number of vertices

« and sometimes number of edges
* Not number of chars

« So steps counted in terms of number of vertices

« Given a graph G = (V, E) with n = |V] vertices

« Max edges = O(|V]?) = O(n?)
« So # vertices + edges is polynomial In

 Algorithm runs in time polynomial in t
algorithm runs in time polynomial in t

length of input
ne number of vertices &

ne length of input



Interlude: Weighted Graphs

Edge weights




Interlude: Subgraphs

Graph H

Subgraph G

shown darker




Interlude: Paths and other Graph Things

e Path

« A sequence of nodes connected by edges

* Cycle
* A path that starts/ends at the same node

-

» Connected graph
« Every two nodes has a path

-]

ree
« A connected graph with no cycles



Interlude: Directed Graphs

O

({1.2,3.4,5.6}, {(1,2),(15), (2.1), (24). (5.4), (5.6), (6.1), (6,3)})

Possible string encoding given to TMs:

 Directed graph = (V E)
« IV =set of nodes, E = set of edges

* An edge is a pair of nodes (u,v), order now matters | Each pair of nodes
e u="“from” node, v = “to” node Included twice

« A “degree” of a node is the number of edges connected to the node
« Nodes in a directed graph have both indegree and outdegree



Check-in Quiz 4/14

On gradescope



