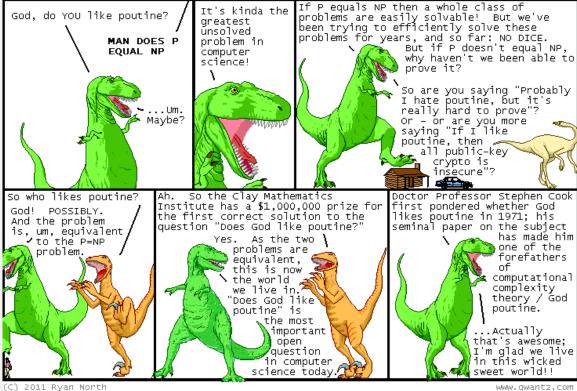
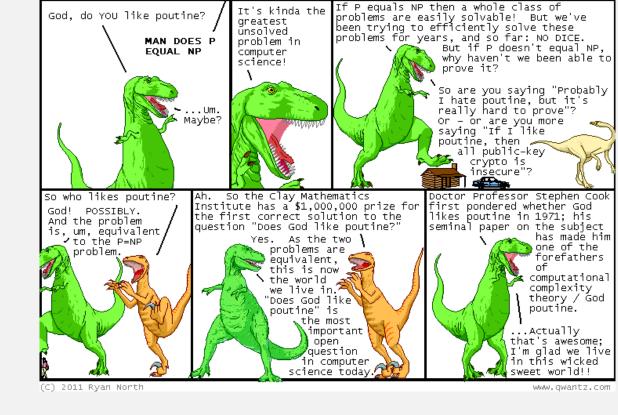
Poly Time Mapping Reducibility

Wednesday, April 28, 2021



Announcements

- HW 10 past due
- HW 11 released
 - Due Tues 5/4 11:59pm EST



104

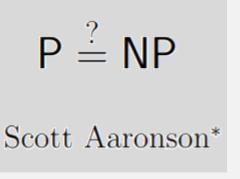
Last Time: P vs NP

- P = class of languages that can be decided "quickly"
 - i.e., "solvable" with a deterministic TM
- NP = class of languages that can be verified "quickly"
 - or, "solvable" with a nondeterministic TM
- Does P = NP?
 - Problem first posed by John Nash

• It's a difficult problem because how do you prove: "we'll never find a poly time algorithm for X"?

Progress on whether P = NP?

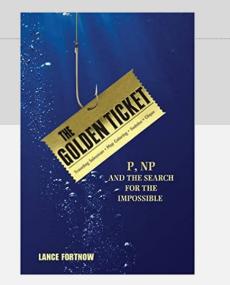
Still not close



By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness (today)



Flashback: Mapping Reducibility

5.20 DEFINITION

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

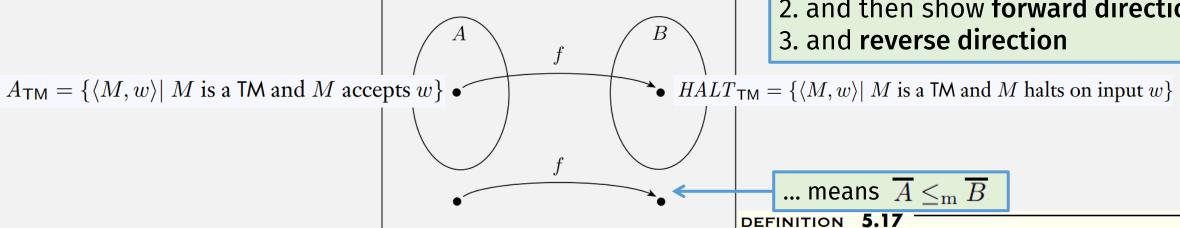
$$w \in A \iff f(w) \in B$$
.

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B.

So to show <u>mapping reducibility</u>:

- 1. must create computable fn
- 2. and then show forward direction



A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

DEFINITION 7.29

Language A is **polynomial time mapping reducible**, ¹or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
. On't Forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just f(w) on its tape.

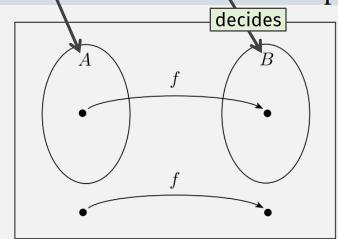
Flashback: If $A \leq_m B$ and B is decidable, then A is decidable.

(Theorem 5.22)

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

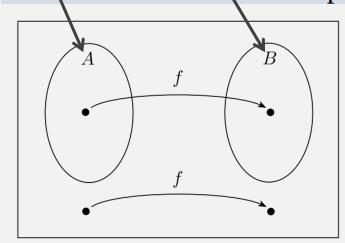
The function f is called the **reduction** from A to B.

THEOREM 7.31 If $A \leq_{\frac{m}{P}} B$ and $B \in \mathcal{P}$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



DEFINITION 5.20

Language A is *mapping reducible* to language B, written $A \leq_{\mathrm{m}} B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

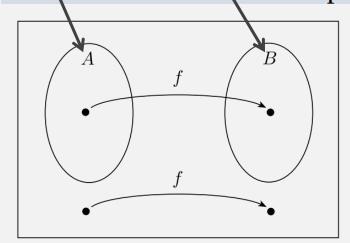
The function f is called the **reduction** from A to B.

THEOREM 7.31 If $A \leq_{\frac{m}{D}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in P}{\text{is decid}}$

poly time poly time A we let A be the decider for A and A be the reduction from A to A. We describe a decider A for A as follows.

poly time
= "On input w:

- Compute f(w).
- Run M on input f(w) and output whatever M outputs."



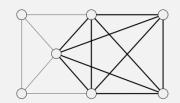
definition value \bar{e}

Language A is mapping reducible to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

Theorem: 3SAT is polynomial time reducible to CLIQUE.



 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G. O(k)
- 2. Test whether G contains all edges connecting nodes in c.

3. If both pass, accept; otherwise, reject."

 $O(k^2)$

DEFINITION 7.18

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is <u>satisfiable</u> if ...

• ... there is some assignment of TRUE or FALSE (1 or 0) to its variables that makes the entire formula TRUE

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - x = 0, y = 1, z = 0

The Boolean Satisfiability Problem

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Show *SAT* is in **NP**:

Let n = the number of variables in the formula

• Verifier:

- Let the certificate c be some assignment of variables to values
- Verifying whether this assignment satisfies the formula takes time O(n)

Non-deterministic Decider:

- Non-deterministically try all possible assignments in parallel
- Checking each assignment again takes time O(n)

What about 3SAT?

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

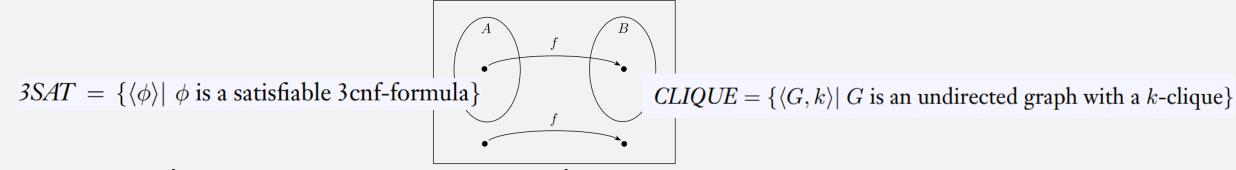
A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

The 3SAT Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$

Theorem: 3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

$$\phi = (x_1 \lor x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_2})$$

- ... to a graph containing a clique:
 - Each clause is a group of 3 nodes
 - Connect all nodes <u>except</u>:
- Contradictory nodes

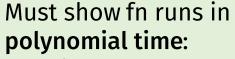
 Don't forget iff Nodes in the same group

$$\Rightarrow$$
 If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are nodes in the clique!
 - eg $x_1 = 0$, $x_2 = 1$

\neq If $f(\phi)$ in *CLIQUE*

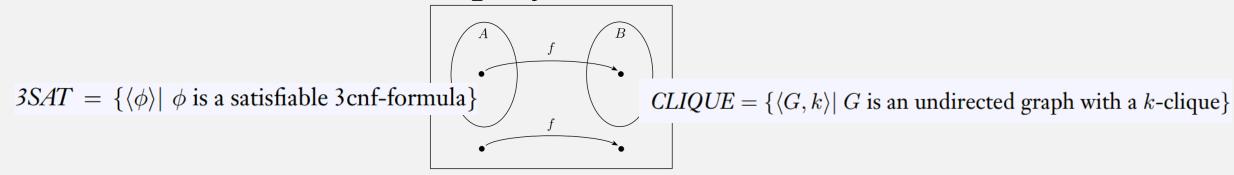
- Each node of clique must come from different group
- So original formula is satisfiable, by because each group can be made TRUE



- # literals =
 - # nodes O(k)
- # edges poly in # nodes

 $O(k^2)$

Theorem: 3SAT is polynomial time reducible to CLIQUE.



• So since *CLIQUE* is in **NP**, then *3SAT* is also in **NP**

NP-Completeness

Must prove for all langs, not just one single language

DEFINITION 7.34

A language B is NP-complete if it satisfies two conditions:

- A B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B.

hard???? ...

How does this help the P = NP problem?

THEOREM 7.35

... figuring out the first NP-Complete problem is hard!

If B is NP-complete and $B \in P$, then P = NP

(Just like figuring out the first undecidable problem was hard!)

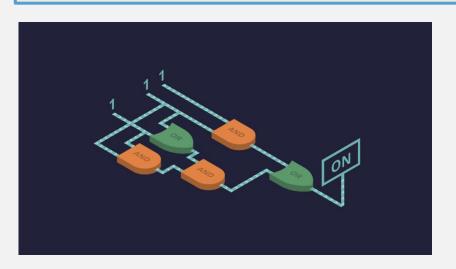
But then we use that problem to prove other problems NP-Complete!

Next time: The Cook-Levin Theorem

The first NP-Complete problem

THEOREM 7.37
SAT is NP-complete

But it makes sense that every problem can be reduced to it ...



Check-in Quiz 4/28

On gradescope