Poly Time Mapping
Reducibility

Wednesday, April 28, 2021

cod, do vou 1ike

{1\

MAN DOES P problem in
EQUAL NP computer

greatest
unsolwed

science!

. It's kinda the [IT P_equals wp then a whole class of

poutine? }/ roblems are easily solvahle! But we've
gen trying to efficiently solwve these

problems for wears, and so far: NO DICE.

But if P doesn't egual NP,
why haven't we been able to
prove it?

S0 are wou say1ng Prubabe
I hate poutine ut 1t 5
really hard to prove"?

Or - Or are you more

saying "IT 1 Tike

poutine, then
e 211 pub11c ko ey
Zx, crypto s

1nsecure 7

God! POSSIBLY.
and the problem

< to the P=NP

so who Tikes poutine? Jah. So the Clay Mathematics

is, um, eguiwvalent

Institute has a $1,000,000 prize for
the first correct solution to the
question "Does God Tike poutine?”

ves. As the two \

B, problems are

e 2ouivalent,

= thiz 1= now
N the world

. we Tiwve in.

"poes God 1ike
b poutine” is

A wthe most

Fouestion
~ in computer
science today.

Doctor Professor stephen Cook
first pondered whether God
Tikes poutine in 1971; his
seminal paper on the subject
has made him

N ﬁ one of the

" forefathers

of
computational
complexity
theory / God
L ACtual Ty
that's awesome;
I'm glad we 1iwve
/] in this wicked

poutine.
& swest world!!

[(Z1 2011 Ryan MWorth

ndald. QWANTZ . Com

' B If P equals WP then a whole class of
God, do you Tike poutine? }/ éﬁeztgggda the FDb1EﬂS are easily solvahle! But we've
ansolved gen trying to efficiently solwve these
MAN DOES P problem in problems for years, and so Far:INO DICE.
EQUAL NP computer G Eut if P QDesn t egual NP,
science! why haven't we been able to

prove it?

S0 are wou say1ng Prubabe
I hate poutine ut 1t 5
really hard to prove"?

Or - Or are you more

saying "IT 1 Tike

Announcements

poutine, then
e 211 pub11c ko ey
Zx, crypto s

1nsecure 7

f) Vil At
so who Tikes poutine? Jah. So the Clay Mathematics
Institute has a $1,000,000 prize for

o HW 10 ast d u e iﬁg!thzosfég%;}] the first correct solution to the Tikes poutine in 1971; his
3. um E wivalent guestion "Does God Tike poutine?” seminal paper on the subject
! o has made him

Doctor Professor stephen Cook
first pondered whether God

ves. As the two \
B, problems are
e 2ouivalent,
= thiz 1= now
N the world
. we Tiwve in.
"poes God 1ike
b poutine” is

A wthe most

< to the P=NP

A ﬁ one of the

" forefathers
of
computational
complexity
theory / God
poutine.

\

L ACtual Ty
that's awesome;
I'm glad we 1ive
? in this wicked

& swest world!!

ndald. QWANTZ . Com

« HW 11 released
e Due Tues 5/4 11:59pm EST

Fouestion
~ in computer
science today.

(é) 2011

Rwan Morth

104

Last Time: P vs NP

P = class of languages that can be decided “quickly”
* |.e., “solvable” with a deterministic TM

* NP = class of languages that can be verified “quickly”
* or, “solvable” with a nondeterministic TM

* DoesP=NP? ~
« Problem first posed by John Nash l iy

ol

Its a difficult problem because how do you prove:
“we’ll never find a poly time algorithm for X"?

Progress on whether P=NP 7

e Still not close

b 2 NP The Status of the P Versus NP Problem

By Lance Fortnow
Scott Aaronson® Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

« One important concept discovered:
« NP-Completeness (today)

Flashback: Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A< f(w) € B. IMPORTANT: “if and only if” ...

"The function f is called the reduction from A to B. | 54 tg show mapping reducibility:

1. must create computable fn
2. and then show forward direction
3. and reverse direction

Atm = {(M,w)| M isaTM and M acce o HALTtm = {{M,w)| M isa TM and M halts on input w}

..means A<, B
DEFINITION 5.17

A function f: ¥*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

DEFINITION 5.20

Language A is mapping reducible to language B, written A <,, B,
if there is a computable function f: ¥*— ¥* where for every w,

we A<+ f(w) € B.

The function f is called the reduction from A to B.
DEFINITION 7.29

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— ¥* exists, where for every

w'!

we A< f(w) e B. <— Don't Forget: “if and only if” ...

The function f is called the polynomial time reduction of A to B.
| | DEFINITION 5.17 Oly time poly ame
A function f: X*— X" is agcomputable function iﬁome Turing
machine M, on every input w, halts with just f(w) on its tape.

Flashback: 1f A <., B and B is decidable, then A is decidable.

(Theorem 5.22)

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider N for A as follows.

N = “On input w:

\ 1. Compute f(w).
decles/ 2. Run M/ on input f(w) and output whatever M outputs.”

\ decides
f
DEFINITION 5.20
Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥*— ¥*, where for every w,
//——L—-\ we A< f(w) € B.
’ i The function f is called the reduction from A to B.

% 'y
THeorem 7.31 If A i:ﬂal_)B and B%S'dfﬂ‘i'dﬂ'b'lf, then Aﬁs—d‘eei-dﬁ-b-lﬁ

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

“On Input w:

Compute f(w).
2 Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
DEFINITION 5.20
Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥*— ¥*, where for every w,
/——L—\ we A< f(w) € B.
’ i The function f is called the reduction from A to B.

% 'y
THeorem 7.31 If A i:ﬂal_)B and B%S'dfﬂ‘i'dﬂ'b'lf, then Aﬁs—d‘ee-i-dﬁ-b-lﬁ

oly time poly time
PROOF Welet M be th(—‘-j\demder for B and f be thel{eductlon from A to B.
We describe &ecider N for A as follows.
poly time

“On input w:

Compute f(w).
2 Run ﬂx[on input f(w) and output whatever M outputs.”

f
DEFlNlTlobllyst?ﬁle
Language A iggnapping reducible to language B, written A <,, B,
if there is a computable function f: ¥*— ¥*, where for every w,
//‘—L—\ we A< f(w) € B.
’ i The function f is called the reduction from A to B.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Last Class: CLIQUE 1s in NP :

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V' = “On input ((G, k), ¢):
1. 'Test whether c is a subgraph with £ nodes in G.
2. Test whether G contains all edges connecting nodes in ¢. | 0(k?)
3. Ifboth pass, accept; otherwise, reject.”

o(k)

DEFINITION 7.18
A verifier for a language A is an algorithm V, where
A = {w| V accepts (w, c¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length HepinITION 7.19
of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

NP is the class of languages that have polynomial time verifiers.

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE

115

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z

116

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

117

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (TAyYy) V (xN\7Z)

118

Boolean Satisfiability

* A Boolean formula is satisfiable if ...

. ... there is some assignment of TRUE or FALSE (1 or 0) to its
variables that makes the entire formula TRUE

e |Is (TAy) V (zAZ) satisfiable?
* Yes
*x=0,y=1,z=0

The Boolean Satisfiability Problem

SAT = {(@)| ¢ 1s a satishiable Boolean formula}
Show SAT iIs in NP:
« Let n = the number of variables in the formula

* Verifier:
* Let the certificate ¢ be some assignment of variables to values
 Verifying whether this assignment satisfies the formula takes time O(n)

« Non-deterministic Decider:
« Non-deterministically try all possible assignments in parallel
« Checking each assignment again takes time O(n)

« What about 3SAT?

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (TAyYy) V (xN\7Z)

121

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)

Literal A var or a negated var T Or T.

122

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.

Clause Literals ORed together (:1'31 VIoVIzV 334)

123

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)

Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)

124

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)

3CNF Formula Three literals in each clause (z1 V@ vas) A (23 VIS Vag) A (a3 VTGV ag)

125

The 3SAT Problem

3SAT = {(¢)| ¢ is a satistiable 3cnf-formula}

3SAT = {(¢)| ¢ 1s a satisfiable 3cnf-formula}

Need: poly time computable fn converting a 3cnf-formula ...
¢ =(r1Vm V[Tl N (71
» ...to a graph containing a clique:

« Each clause is a group of 3 nodes

« Connect all nodes except:
« Contradictory nodes
Don't forgetiff | Nodes in the same group

=> |f @ € 3SAT

« Then each clause has a TRUE liters
« Those are nodes in the clique!
c egx;=0,x,=1
<= Iff(t;i‘-') in CLIQUE
« Each node of cliqgue must come from different group

VZzVT2) A (TTVaa V

heorem: 3SAT is polynomial time reducible to CLIQUE

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

il?g)

Must show fn runs in
polynomial time:
- # literals =

nodes O(k)
- H# edges polyin#

nodes 0(k?)

« So original formula is satisfiable, by because each group can be made TRUE

heorem: 3SAT is polynomial time reducible to CLIQUE

4 B
;
3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
-

* So since CLIQUE is in NP, then 3SAT is also in NP

NP-Completeness

Must prove for | PEFINITION 7.34

all langs, not | A language B is NP-complete if it satisfies two conditions:

just one single
J g 1. Bisin NP, and | easy

language
S e 2. every A in NP is polynomial time reducible to B. hard???? ...
- How does this help the P = NP problem? ... figuring out the
first NP-Complete
THEOREM 7.35 ... problem iS hard!

It B is NP-complete and B € P, then P = NP

(Just like figuring out the first
undecidable problem was hard!)

But then we use that problem to prove other problems NP-Complete!

Next time: The Cook-Levin Theorem

The first NP-
Complete

problem THEOREM 7.37

SAT is NP-complete But it makes sense that every

problem can be reduced to it ...

Check-in Quiz 4/28

On gradescope

