The Cook-Levin Theorem
(i.e., the first NP-Complete Problem)
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Today: The Cook-Levin Theorem tHeorem 7.37

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle 1is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles

Hard part

DEFINITION 7.34

SAT is NP-complete
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A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
—> 2. every A in NP is polynomial time reducible to B.



To Show Poly Time Mapping Reducibility ...

DEFINITION 7.29

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial tim¢ computable function f: 2* — ¥* exists}, where for every

w'ﬂ

we A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

1. Create a computable fn fconverting a string in lang A to one in B

2. Show that it runs in polynomial time

3. Show that the “if and only If” relation holds:
=> If win A4, then f{w) in B
<=If f{lw) in B, then win A
<= (alternative), show contrapositive: if w not in 4, then f{iw) notin B



Reducing every NP language to SAT

Some NP lang = {w | wis 7?7}

How can we come up with reduction of some w
to a Boolean formula if we don’t know w???



Proving theorems about an entire class of langs?

« We still know some general things about the languages

THEOREM 1.45

* E.8., The class of regular languages is closed under the union operation.

« PROOF USes the theorem that every reg lang has an NFA accepting it

Let Ny = (Q1,%,61,q1, F1) recognize Ay, and Proofis a algorithm for. .
Ny = (Q2, %, 82, g2, F») recognize A,. constructing a union-recognizing
NFA from any two NFAs

Construct N = (Q, X, 4, qo, F') to recognize A; U As,.

THEOREM 4.7
* E.g., Acrc is a decidable language. Ackc = {{(G,w)| G is a CFG that generates string w}

Proof uses the theorem that every CFG has a Chomsky Normal Form



What do we know about strings in NP langs?

* They are:

» Verified by a deterministic poly time verifier (NP definition)

 Decided by a nondeterministic poly time decider (NTM) (Thm 7.20)
Let’s use this one




Review: Non-

« Formally defined with states, transitions, alphabet ...

deterministic TMs

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo. Gaccept; Greject), Where
Q, X, I are all finite sets and

1.
. X 1s the input alphabet not containing the blank symbol .,
. I is the tape alphabet, where u € I"'and X C T,

L0:Q xT'—P(Q x T x {L,R}) transition function,

. go € (@ 1s the start state,

] N W W N

( 1s the set of states,

. Qaccepr € @ 1s the accept state, and

« Qreject € @ 1 the reject state, where grejece 7 Gaceept-

« Computation can branch
« Each node in the tree represents a TM configuration

(
()

: f
101 1q701111

reject e ¢

B

- accept



Review: TM Config = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position



Review: Non-deterministic TMs

« Formally defined with states, transitions, alphabet ...

|dea: We don’t know the . Turing machine is a 7-tuple, (0,3, I, 0. qo, Gaccepts Greject), Where
specific language or strings in > > ! reall finite setsand
the [anguage’ but ... 1. @ is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,
. 3. I' is the tape alphabet, where v € I'and X C T, (')
.. we know those strings must | 4 5. )« 1—P(Q x I x {L,R}) transition function, N Y
have an accepting sequence of | s do € Q is the start state, f i\v \
conﬁgu rations! 6. Qaccepr € (@ 1s the accept state, and ; f

7

« (reject S 'Q is the rchCt state, where Qreject ‘7é Qaccept- 101 1(]7011 11
{

reject e ¢

« Computation can branch .
« Each node in the tree represents a TM configuration Y

. . [} ° ® ° ’ ﬂCC‘-ept
 Transitions specify valid configuration sequences
q10000 == ug2000 mm) Lxq300 =) ux0g40 - — UXXXUaccept




Accepting config sequence = “Tableau”

nk

do

. W

Tl

nk

start configuration

s inputw=w, ..w,

# | second configuration

« To simplify proof, assume
configs start/end with #

« Some config must be
accepting config

« At most n* configs
* (why?)

nkth configuration

« Each config has length n*
* (why?)



Theorem: SAT is NP-complete

* Proof idea:
« Give an algorithm that reduces accepting tableaus to satisfiable formulas

* Thus every string in the NP lang will be mapped to a sat. formula
« and vice versa . .
Resulting formulas will have four
components:

¢CC” A ¢start A fbmnvc A qbacccpt




Tableau Terminology

A tableau cell has coordinate i;

* A cell has symbol:
seC=QUT U{#}

A # |qo |wqlwo

w

cell

¥ #

-
-

nk

start configuration

second configuration

n*th configuration

A Turing machine is a 7-tuple, (Q,X,T, 0, o, Gaccept, Greject), Where
Q, X, I are all finite sets and

I'=Q is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,

3.#F is the tape alphabet. whereu e "'and ¥ C T,
40: QxI'—P(@Qx T X {L R})e transition function,

5. qp € @ 1s the start state,
6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



#|qo|wylwe| ... |Wy, u| ... | u|# | start configuration

second configuration

Formula Variables

A tableau cell has coordinate i; " \

* A cell has symbol:
seC=QUT U{#}

Use these variables to create ¢celi A Gsart A Pmove /\ Paceepr SUCh that:

. . accepting tableau <& satisfying assienment
* For every ij,s create Varrawre ai s yIng 25318

ation

LJ,S A Turing ml* For accepting tableau: here
* 1.e., one var for every possible e . all four parts must be TRUE
SymbOI/Ce“ combination _ |+ For non-accepting tableau
1. Qs th + only one part must be FALSE
2. ¥ 1s thd y P S L,
. 3. I is the tape alnhabct wherev e T and Y CT,
° TOtal Varlables = 40: @ x I'—P(Q X ' x {L R})e transition function,
* # cells * # symbols = 5. gy € Q is the start state,
- nk k nk * |C| — 0(n2k) 6. Qaccepr € @ 1s the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



accepting tableau: all four must be TRUE

¥ | second configuration ; I non-accepting tableau: one must be FALSE
#

@cell A @start A @mnv& A ¢accept

./’_———\\.
# | nkth configuration O _ Q U F U {#}
b =\ [( \Y; Ii,j,s) A ( N\ @5V %,j,t))]
1<3,5<nk - seC s, teC
/ N\ AN
“The following “The variable And only one l.e., every cell
must be TRUE for one s must variable for some has a valid
for every cell ij” be TRUE” s must be TRUE character

 Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

« Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily

149



wiwg] o Juglu] --- [u]#] start configuration accepting tableau: all four must be TRUE
seconiiconfiguegrion P |Z[ non-accepting tableau: one must be FALSE
@cell /\ @start A @mnv& A ¢accept
f
— T
# h configurat

The variables in Gstart = T1,1,8 N\ T1,2,90/\
the start config, —

x Nx A...\NT A
ANDed together 1,3,wq 1,4, w2 1,n+4+2,w,

L1,n+3,u AN A L1 nk—1,U A L1,nk # :
l.e. tableau has

valid start
config

 Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

« Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily

150



accepting tableau: all four must be TRUE

¥ | second configuration non-accepting tableau: one must be FALSE

M |
@cell A @start A @mnve

— T
The state q,cep
Paccept = \/ L3, 5, Gaccept € must appear in
1<4,j<nk some cell

l.e., tableau has
valid accept
config

 Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

« Does a non-accepting tableau correspond to an unsatisfiable formula?
* Yes, because it wont have g,

151



# |qo wywg ... ‘”‘n| u u | # Ht:lrtL'(Jl'lﬁg‘lll‘dli()l\ accegting tt’%lbl.eaUI all four mUSt be TRUE
¢ # | second configuration non-accepting tableau: one must be FALSE

/ | M
e e ‘i}ccll A ‘i?‘Start A Qﬁmm?c A Qbacglr::pt

* Ensures that e configuration Is legal according to the
previous configuratien and the TM’s 6 transitions

« Only need to verify every 2x3 “window”

« Why?

« Because Iin one step, only the cell at the head can change
* E.g., If d(q1,b) = {(g2.,c,L), (2,2,R)}

- Which are legal? TS T T 72?2

(a) (b) —— © L
gzl alc aj|aljaqgs alal|b
# | b | a alb]| a b
(d) (e) (f)
# | bl a a|b|ge c




accepting tableau: all four must be TRUE

go|wywy| ... e u start cc ation
# # | second configuration non-accepting tableau: one must be FALSE

g

M |
@cell A @start A A ¢acczept

./’_——_\\.
l.e., all . : : .
transitions are | @move = /\ (the (2, 7)-window i1s legal) i _tuppelrl
. center ce
legal, according 1<i<nk, 1<j<nk
to delta fn

v (xi,j—l,ﬂl /\ xi,j?ag /\ Ii,j+l,a3 /\ $i+l,j—1,a4 /\ $i+11j1{15 /\ $i+1,j—|—1,{15)
ai,...,ae
is a legal window

 Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

« Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily




golwilwr] .. fwgu] ... Ju]#] surconfiguration accepting tgbleau: all four must be TRUE
# || second configucation non-accepting tableau: one must be FALSE

M | M
@cell A @start A @mnv& A ¢acczept

move — /\ (the (Z, j)—WiI’ldOW 1S Iegal) Lj=upper

center cell

1<i<nk, 1<j<nk

v (xi,j—l,{ll /\' xi,j?ag /\' Ii,j+l,a3 /\ $i+l,j—1,a4 /\ $i+11j1{15 /\ $i+1,j—|—1,aﬁ)
ai,...,ae
is a legal window

 Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

« Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily




To Show Poly Time Mapping Reducibility ...

DEFINITION 7.29

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial tim¢ computable function f: 2* — ¥* exists}, where for every

w'ﬂ

we A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

v 1. Create a computable fn fconverting a string in lang A to one in B

2. Show that it runs in polynomial time

¥ 3. Show that the “if and only if” relation holds:
¥ =>ifwin A, then f{w)inB
<=If f{lw) in B, then win A
¥ <= (alternative), show contrapositive: if w not in 4, then f{lw) not in B



Time complexity of the reduction

 Number of cells = 0(n?k)

Deell = /\ [(\/ 'I:?,_j‘s) A (/\ (1%33\/1,330)] 0(n?¥)

1<3,5<nk = seC s,teC
SFt
“The following “The variable And only one
must be TRUE for one s must variable for some

for every cellij” be TRUE” s must be TRUE



Time complexity of the reduction

 Number of cells = 0(n?k)

0( nZk)

Peen = /\ [(\/ %j,s) A ( I\ (ﬂ’fi?jfsv%j,t))]

1<3,5<nk = seC s,teC
sF£t
Ostart = 1,18 N T1,2,g9/\

The variables in T1 3w, NT1awg Neeo AT g2, N\ O(nk)
the start config,
ANDed together

:1:137'1_-{—3:[_] /\1 A /\ :I:]_:.”k_]_,u /\ :I:]_?.nk:#




Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ xi,j,s) A ( /\ (Tigs V Sﬂijj,t))] 0(n?¥)

1<i,j<nk - seC s,teC
SFt

fbﬁtart = T1,1.# A $1;2=QDA

k
3:1!3:1“1 /\ $1:4:w2 /\ e A :I:]-sn_i_z:u"ﬂ/\ 0(" )

:1:137'1_-{—3:[_] /\1 A IA\ :I:]_:.”k_]_,u /\ 'T:]_,ﬂk:#

The state q,qcep
\/ L%, 5, Gaccept must appear in

Ql)a(:{:c pt —

0(n?¥)

1<4,j<nk some cell



Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ $i,j,s) A ( /\ (Tigs V :Bi,j,t))] 0(n?¥)

1<i,j<nk - s€C s,teC
SFt

fbﬁtart = T1,1.# A 3:1;2;%/\

k
T1,3,w1 NT14wy N+ NT1 0420, N O(n*)
L1 n+3,u VAN A 331=nk—1,u A 'Il,nk:#
- 2k
@HCCﬂPt — \/ 'Illew Qaccept 0(" )
1<i,5<n”
Dmove = /\ (the (4, 7)-window 1is legal) 0(n?%)

1<i<nk, 1<j<nk




Total:
0(n2k)

Time complexity of the reduction

* Number of cells = 0(n?¥)

Peell = /\ [( \/ xi,j,s) A ( /\ (Tigs V Sﬂijj,t))] O(n?¥)

1<s,j<nk = seC s,teC
SFt

fbﬁtart = T1,1.# VAN 11'11:2:%,"\
k
3:1!3:1“1 /\ $1:4:w2 /\ e A 'Il,ﬂ-l—l“wﬂ/\ 0(" )

:1:137'1_-{—3:[_] /\1 ‘o o IA\ :I:]_:.”k_]_,u /\ 'T:]_,ﬂk:#

uccept = N Ti,jgue 0(n?¥)
1<i,5<n”
gbmovc — /\ (the (’L, j)—Wil'ldOW 1S legal) 0(n2k)

1<i<n®, 1<j<nF



To Show Poly Time Mapping Reducibility ...

DEFINITION 7.29

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial tim¢ computable function f: 2* — ¥* exists}, where for every

w'ﬂ

we A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

Create a computable fn fconverting a string in lang A to one in B

Show that it runs in polynomial time

M 1.
M 2.
¥ 3. Show that the “if and only if” relation holds:
¥ =>ifwin A, then f{w)inB

<=If f{lw) in B, then win A
¥ <= (alternative), show contrapositive: if w not in 4, then f{lw) not in B



QED: SAT 1s NP-complete

166



THEOREM 7.36 - known ... UNKNOWN |, .. ..eeeeesssssssssssssssssssssnsnsnnnsnssssssnnnnnnnnnnn

It B is NP-complete and B <p C for C in NP, then C'is NP-complete.

To use
Proof: this
. theorem,
* For every language A in NP, reduce A to C by: C must be
e First use the reduction from 4 to B in NP
 This exists because B is NP-Complete
e Then Bto C

 This is given

* This runs in poly time because of the definition of NP-
completeness and poly time reducibility



Theorem: 3SAT is NP-complete.

 Proof: To use thm 7.36, must show poly time reduction from:
e SAT (known to be NP-Comp[ete) SAT = {(¢)| ¢ is a satisfiable Boolean formula}
* to 3SAT (known to be in NP) 3SAT = {($)| ¢ is a satisfiable 3cnf-formula}

« Given an arbitrary SAT formula:
1. First convert to CNF (an AND of OR clauses)

« Use DeMorgan’s Law to push negations onto literals Otn)
-(PV Q) <= (-P)A(-Q) “(PAQ) < (-P)V (—Q)
 Distribute ORs to get ANDs outside of parens
(PV(QAR) & (PVQ)A(PVR)) On)
« Then convert to 3cnf by adding new variables o
- n

(a;VayVasVay) < (@1VayVz)AZVasVay)

THEOREM 7.36

Remaining step:
show iff relation
holds

If B is NP-complete and B <p C for C in NP, then C'is NP-complete.



Check-in Quiz 5/3

On gradescope



