CS420

(Deterministic) Finite Automata

Wednesday, January 26, 2022
UMass Boston Computer Science

Arnoancements
« HW 0 due Sunday 1/30 11:59pm EST

 Office Hours (via zoom)
« Hannah: Mon 2-3:30pm
* Me: Tue/Fri 4-5:30pm

last tine: The Theory of Computation ...

 Creates and compares mathematical models of computers

* In order to:
« Make predictions about computer programs
« Explore the limits of computation

last tire. LEVElS Of Computational Power

grammars (generators) automata (acceptors)

recursively
enumerable

Turing
machine

* more complex
* more powerful
* less restricted

!

context- linear bounded
sensitive automaton

context- push-down
free automaton
S

\

regular finite "\

grammar autmy‘ We start here

Finite Automata: A computational model for ...

Finite Automata

» A finite automata or finite state machine (FSM) ...

e ... 1S @ computer with a finite number of states

A Microwave Finite Automata

Inputs change states
(possibly)

press stop press start

é press start é
press stop

States

Finite Automata: Not Just for Microwaves

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal
state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Finite Automata: |
acommon——

programming pattern

Note: Computers can simulate
computers (more on this later)

Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referred to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine can be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

1

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

12

Model-view-controller (MVC) is a FSM

(MODEL \
States
UPDATES MANIPULATES Inputs Change StateS
VIEW CONTROLLER
: N5 /!
The View draws states R &
N\ /

A Finite Automata 1s a Computer

« Avery limited computer with finite memory
 Actually, only 1 cell of memory!
« States = the possible things that can be written to the memory

* Finite Automata has different representations:

* Code
»>State diagrams

Finite Automata state diagram

Accept State
1
1 0
O 0=
Start State " " Inputs cause state transitions

States

A Finite Automata 1s a Computer

« Avery limited computer with finite memory
 Actually, only 1 cell of memory!
« States = the possible things that can be written to the memory

 Finite Automata has different representations:
* Code
 State diagrams
»Formal mathematical model

16

Finite Automata: The Formal Definition

2 5 components

DEFINITION
deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Also called a Deterministic Finite Automata (DFA)

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Example: as state diagram

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. @ is a finite set called the states, 1 L
2. Y 1s a finite set called the alphabet,) Q {Ql 92, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {0;1}, l?cl’aCfSt.—
4. qo € Q is the start state, and : 2 Sét notation
do € (15 the start s 3. d is described as | 16 quplicates)
5. F C Q is the set of accept states.
0 1
0 1 q1 [91 42
‘ Q2 | 93 G2
1 43 | 92 42,
qt , -- ,
@ 1 4. ¢, 1s the start state, and

0 5. F = {g).

Example: as state diagram

19

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. @) is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 92, 43 }’ . .
3. 0: Q x X—Q is the transition function, 2. Y = {O,]—}, Possible inputs
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0 1
Ill 1 d1 | 91 q2
‘ 42 | 43 Q2
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {gs).

Example: as state diagram

20

Example: as formal description

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where
1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet, | Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {071},
4. qo € Q is the start state, and 3. § is described as —
. ‘ “And this Is next
5. F C Q is the set of accept states. : "
0 1 Input symbol
0 e a1 1 91 g2 .
“If in this “Then go to
state” 92 [43 42 this state”
43 | 92 42,
q1 :
4. ¢, 1s the start state, and
5. F = {gs).

Example: as state diagram

Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. X = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [91 42
‘ g2 | 43 G2
1 43 | 42 42,
. 4. ¢, 1s the start state, and

1
0 5. F = {go).

Example: as state diagram

Example: as form ription
DEFINITION ample: as formal descrip

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
O 1
0 q1 | 91 g2
q2 | 43 Q2
1 43 | 92 42,
q1 :
4. ¢ 1s the start state, and

5. F = {QQ}.

Example: as state diagram

Precise Terminology 1s Important

- A finite automata or finite state machine (FSM) is a ...
... computer with a finite number of states

« There are many FSM variations. We've learned one so far:

« the Deterministic Finite Automata (DFA)
* (So currently, the term DFA and FSM refer to the same definition)

« Eventually, we'll learn other FSM variations,
« e.g., Nondeterministic Finite Automata (NFA)

« Then, you will need to be more careful with terminology

« We will show that: all FSMs are related; they are equivalent in “power”

Computation on an FSM (JFLAP demo)

|
 FSM: >° 1 e

* Program: “1101"

FSM Computation Model

Informally Formally (i.e, mathematically)

« Computer = a finite automata ' M = (Q, >3, 0, qan)

« Program = input string of chars, eg “1101” * W = wWiws; -/ Wy
To run a program:
e Start in “start state” * 70 = qo

- Read 1 char at a time, changing states ~ * 0(ri, Wit1) = 741, fori =0,...,n -1
according to the transition table

Let’s come up with new notation to represent this part

e Result = o M accepts w if
« “Accept” If last state is “Accept” state sequence of states ¢, 71, . ., 7, in\Q exists . ..

« “Reject” otherwise _
J Still a little verbose with r, € I

d: Q X ¥—Q is the transition function

An Extended Transition Function

*=%0 or more”

Define the extended transition function: § : Q x ¥* — @
 Inputs:
+ Some beginning state ¢ € @) (not necessarily the start state)
* Inputstring W = W1W2 -+ Wy where w, € Y
* Qutput:
- Some ending state (not necessarily an accept state)

(Defined recursively)
Empty string

* Base case: 5((], 5) — First char Remaining chars

e Recursive case: 5(@» w) — 5(5(% wl)v wy - - wn)

Recursive call Single transition step

FSM Computation Model

Informally Formally (i.e, mathematically)
 Computer = a finite automata M = (Q,%,0,qo, F)
« Program = input string of chars ¢« W = WW2 - Wy

To run a program:

e Start in “start state” * 7o = qo

« Read 1 char at a time, changing states e (ri,w;s1) =141, fori =0,...,n—1
according to transition table

M accepts w it 8((]0,?1)) c F

sequence of states 1,71, ..., 7, in () exists . ..

Still a little verbose with 7, € F

* Result =
* “Accept” If last state is “Accept” state
« “Reject” otherwise

Languages
A language Is a set of strings

* A string is a finite sequence of symbols from an alphabet

« An alphabet is a non-empty finite set of symbols

¥ ={0,1}

22 — {a?b? de?e)fﬁgﬁhji?j?kﬁlﬁmjnﬁojquirjSﬁtﬁu?V7W3X?y7z}

Computers and Languages

« Every computer iIs associated with a language
* The language of a machine is the set of all strings that it accepts
» E.g., An FSM M accepts w if 6(qo, w) € F

e Language of M = L(M) = {w | M accepts w}

“the set of all ...” “such that...”

Language Terminology

* M accepts w string

* M recognizes langnage A
it A = {w| M accepts w}

Set of strings

Computation and Classes of Languages

« Every computer iIs associated with a language
* The language of a machine is the set of all strings that it accepts

« A computation model is represented by a set of machines

« £.g, all possible FSMs represent a computation model

 Or: a computation model is represented by a set of languages

Regular Languages

A language is called a regular language

if some finite automaton recognizes it.

A language is a set of strings.

M recognizes language A

A language, regular or not? A ol M accente]

e If given: Finite Automata M
« We know: the language recognized by M is a regular language

* |f given: some Language A

* Is A Is a regular language?
« Not necessarily!

« How do we determine, i.e., prove, that A is a regular language?

A language is called a regular language

if some finite automaton recognizes it.

Kinds of Mathematical Proof

 Proof by construction
« Construct the mathematical object in question

Example:

« To prove that a language Is regular ...

e ... construct a finite automata recognizing the language

* (Because that's what definition of a regular language says)

Designing Finite Automata: Tips
 Input may only be read once, one char at a time

« Must decide accept/reject after that

« States = the machine’s memory!
e #t states must be decided in advance
e So think about what information must be remembered.

» Every state/symbol pair must have a transition (for DFAS)

Design a DFA: accept strs with odd # 1s

e States:
e 2 states:
« seen even 1s so far So finite automata are
* seen odds 1s so far used to recognize simple

string patterns?

* Alphabet: @ and 1
0
SN
. . . Do you know of anything else
Transitions: @-@ used to recognize simple
string patterns?

1 0 O
. | .
1

. Yes!

e Start / Accept states: —

Combining Automata

Combining DFAS?

Password Requirements

e DFA

» Passwords must have a minimum length of ten (10) characters - but more is better!

» Passwords must include at least 3 different types of characters:
» upper-case letters (A-Z) <— DFA

DEA ——»>|ower-case letters (a-z)

» symbols or special characters (%, &, *, $, etc.) €<— DFA
» numbers (0-9) «— DFA

» Passwords cannot contain all or part of your email address<— DFA

» Passwords cannot be re—used<— DFA

s://www.umb.edu/it/password

To match all requirer;lents,
can we combine smaller DFAs? .

https://www.umb.edu/it/password

Password checker

Mc: AND

M;: OR

M,: Check special chars

Want to be able to
easily combine finite
automata machines

M,: Check uppercase

To combine more
than once,
operations must
be closed!

M,: Check length

A set is closed under an operation if:

UC lOS@ d "’ O p e rat| ons the result of applying the operation to

members of the set is still in the set

* Natural numbers ={0, 1, 2, ...}

* Closed under addition:

« if xand y are Natural number,

« thenz=x+yis a Natural number
* Closed under multiplication?

* yes
e Closed under subtraction?

° Nno

* Integers={...,,-2,-1,0,1, 2, ...}
 Closed under addition and multiplication
 Closed under subtraction?
* yes
 Closed under division?
° no

« Rational numbers = {x| x=y/z yand z are Integers}

e Closed under division?
e No?
e Yes ifz!=0

Why Care About Closed Ops on Reg Langs?

 Closed operations preserves “regularness”
e |.e., It preserves the same computation model!

* So result of combining machines can be combined again

Password checker: “Or” = “Union”

M;: OR
M,: Check special chars

M,: Check uppercase

65

Password checker: “Or” = “Union”

M;: Check special chars @

M,: Check uppercase

Union: AUB ={z|z € Aorz € B}

Union of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

AU B = {good, bad, boy, girl}

A Closed Operation: Union

THEOREM ..

The class of regular languages is closed under the union operation.

In other words, if A; and As are regular languages, so is A; U As.

« How do we prove that a language is regular?
« Create a FSM recognizing it!

« So to prove this theorem ...
create a machine that combines the machines of A, and A,.

Kinds of Mathematical Proof

 Proof by construction
 Construct the mathematical object in question

« E.g, To prove that language A, U 4, Is regular ...
construct a finite state machine recognizing it!

THEOREM ..

The class of regular languages is closed under the union operation.

Union Closed?

In other words, if A; and A are regular languages, so is A1 U As.

Proof M runs its input on both
. Civan. M1 =(Q1,%,01,q1, F1), recognize A, M, and M, in parallel;
Given: , 1 and M
My = (Q2,3, 02, g2, F2), recognize A, accept if either accepts

« Construct: a new machine M = (@, %, 6, qo, F) using M, and M,

» states of M: Q ={(r1,m2)|r1 € Q1 and 2 € Q2}.
This set is the Cartesian product of sets ()1 and Q-

* M transition fn: §((r1,r2),a) = (01(r1,a),02(r2,a)) | astepin My astepin ,
M start state: (¢1,92)
e M accept states: F' = {(?'1??"2)‘ ry € Fyorry € FQ} Accept if either M, or M, accept

Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

M,: CONCAT
M,: recognize M,: recognize
numbers words

72

Concatenation: Ao B = {zy|z € Aand y € B}

Concatenation of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

Ao B ={goodboy, goodgirl, badboy, badgirl}

s Concatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

« Construct a new machine M? (like union)
« From DFA M, (which recognizes A,),
« and DFA M, (which recognizes A4,)

s Concatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

 Can't directly combine A, and A, because:
« Need switch from A, to A,
 But don’t know when!(can only read input once)

* Need a new kind of machine!
« So is concatenation not closed for reg langs???

N N, Concatentation

4 N ~
. © o
0o 8 2 %% 6
N is a new @ y N O O y
kind of | |
machine’ an Let Nl I‘ecognize Al) and N2 I'ecognize A2. e = empty string = no Input
NFA! , . S0 N can:
(next time) Want: Construction of N to recognize A oA - stay in current state and
- move to next state
d A\
4) L N
R ©
e |
—O O —() o o
O O € @
\ Oj _ O O Y

Check-in Quiz 1/26

On gradescope

