CS420 Combining Automata & Regular Languages

Monday, January 31, 2022

UMass Boston Computer Science

Announcements

• HW 0 in

- HW 1 out
 - Due Sun 2/6 11:59pm

Last Time: Alphabets, Strings, Languages

• An alphabet is a <u>non-empty finite set</u> of symbols

$$\Sigma_1 = \{\texttt{0,1}\}$$

$$\Sigma_2 = \{\texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e},\texttt{f},\texttt{g},\texttt{h},\texttt{i},\texttt{j},\texttt{k},\texttt{l},\texttt{m},\texttt{n},\texttt{o},\texttt{p},\texttt{q},\texttt{r},\texttt{s},\texttt{t},\texttt{u},\texttt{v},\texttt{w},\texttt{x},\texttt{y},\texttt{z}\}$$

• A string is a finite sequence of symbols from an alphabet

01001 ab

abracadabra

 ε Empty string (length 0)

A language is a <u>set</u> of strings

 $A = \{ \mathsf{good}, \mathsf{bad} \}$

 \emptyset { }

Empty set is a language

Languages can be infinite

 $A = \{w | w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}

"the set of all ..."

"such that ..."

Last Time: Computers and Languages

• The language of a machine is the set of all strings that it accepts

E.g.,

- An DFA $M=(Q,\Sigma,\delta,q_0,F)$ accepts string w if $\hat{\delta}(q_0,w)\in F$
- *M* recognizes the language $L(M) = \{w \mid M \text{ accepts } w\}$

Last Time: Regular Languages

A language is called a *regular language* if some finite automaton recognizes it.

Last Time: Finite State Automaton, a.k.a. DFAs

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta:/Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.
- Key characteristic:
 - Has a finite number of states
 - I.e., a computer or program with access to a single cell of memory,
 - Where: # states = the possible symbols that can be written to memory
- Often used for text matching

Combining DFAs?

To match <u>all</u> requirements, combine smaller DFAs into one big DFA?

https://www.umb.edu/it/password

Password Checker DFAs

 M_5 : AND But what if this is not M_3 : OR a DFA? M_1 : Check special chars M_2 : Check uppercase M_4 : Check length

Want to be able to easily <u>combine</u> DFAs

We want:

OR, $AND : DFA \times DFA \rightarrow DFA$

To <u>combine more than once</u>, operations must be **closed**!

"Closed" Operations

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>

- Set of Natural numbers = $\{0, 1, 2, ...\}$
 - <u>Closed</u> under addition:
 - if x and y are Natural numbers,
 - then z = x + y is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no
- Integers = $\{..., -2, -1, 0, 1, 2, ...\}$
 - <u>Closed</u> under addition and multiplication
 - Closed under subtraction?
 - yes
 - · Closed under division?
 - no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}$
 - Closed under division?
 - No?
 - Yes if z!=0

Why Care About Closed Ops on Reg Langs?

- Closed operations preserve "regularness"
- I.e., it preserves the same computation model!
- This way, a "combined" machine can be "combined" again!

We want:

OR, $AND : DFA \times DFA \rightarrow DFA$

Password Checker: "OR" = "Union"

Password Checker: "OR" = "Union"

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \dots, z\}$.

If
$$A = \{ good, bad \}$$
 and $B = \{ boy, girl \}$, then

$$A \cup B = \{ good, bad, boy, girl \}$$

(A set is **closed** under an operation if the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>)

A Closed Operation: Union

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- How do we prove that a language is regular?
- A language is called a *regular language* if some finite automaton recognizes it.

- Create a DFA recognizing it!
- So to prove this theorem ... create a DFA that recognizes $A_1 \cup A_2$

THEOREM

The class of regular languages is closed under the union operation.

<u>Proof</u>

• Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Idea: M "runs" its input on both M_1 and M_2 in parallel

- Construct: a <u>new machine $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2 </u>
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

THEOREM

The class of regular languages is closed under the union operation.

<u>Proof</u>

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1.$

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: a <u>new machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2 </u>
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple
$$(Q,\Sigma,\delta,q_0,F)$$
, where $a)=\left(\delta_1(r_1,a),\delta_2(r_2,a)\right)$ a step in M_1 , a step in M_2

- **1.** *Q* is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

THEOREM

The class of regular languages is closed under the union operation.

<u>Proof</u>

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- M transition fn: $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$ a step in M_1 , a step in M_2
- M start state: (q_1, q_2)

THEOREM

The class of regular languages is closed under the union operation.

<u>Proof</u>

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- M transition fn: $\delta((r_1,r_2),a)=\left(\delta_1(r_1,a),\delta_2(r_2,a)\right)$ a step in M_1 , a step in M_2
- M start state: (q_1, q_2)

Remember:

Accept states must be subset of *Q*

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{ \text{good}, \text{bad} \}$ and $B = \{ \text{boy}, \text{girl} \}$, then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - From DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

 M_2

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- And M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$
- But if M sees ab as first part of input ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- And M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$
- But if *M* sees **ab** as first part of input ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is abc cde)
 - or switch to M_2 (correct, if full input is abcde)
- But it needs to handle both cases!

A DFA can't do this!

(We need a new kind of machine)

Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation

Deterministic vs Nondeterministic

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

1. Q is a finite set called the *states*,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the set of accept states.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

A power set is the set of all subsets of a set

• <u>Example</u>: *S* = {a, b, c}

- Power set of *S* =
 - {{ }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Transition label can be "empty", accept states.

i.e., machine can be "empty"
without reading input

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},$
- 3. δ is given as

Result of transition is a set

 q_1 $\{q_3\}$

Empty transition

(no input read)

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

Multiple 1 transitions

101

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Next Time: Running Programs, NFAs (JFLAP demo): **010110**

Check-in Quiz 1/31

On gradescope