CS420 Nondeterminism and NFAs

Wednesday, February 2, 2022 UMass Boston Computer Science

Announcements

- HW 1
 - due Sunday 2/6 11:59pm EST
- Grades so far published in Gradescope
 - Use "regrade" feature for questions or regrade requests
- See Piazza post about asking HW questions
 - Remember this is a math course
 - So key terms have precise formal definitions
 - Step 1 to solving a problem is to understand all definitions

Last Time: Formal Definition of NFAs

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet, Different transition fn

- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

NFA transition not required to read input, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Transition results in a <u>set of states</u>

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- $4 / q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Last Time: NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

 q_1

Empty transition

(no input read)

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

Result of transition is a set

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Multiple 1 transitions

Running Programs, NFAs (JFLAP demo): **010110**

NFA Computation Sequence

An NFA accepts

its input if at

least one path

ends in an

accept state

Symbol read Start q_3 Each step can branch into multiple states at the same time! (q_3) q_2 q_4 So this is an accepting computation

Flashback: DFA Computation Model

Informally

- Machine = a DFA
- <u>Input</u> = string of chars

Machine accepts input if:

- Start in "start state"
- Repeat:
 - Read 1 char, change state according to transition fn
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

M accepts w if

sequence of states r_0, r_1, \ldots, r_n in Q exists with

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$

• $r_n \in F$

NFA

Flashback: DFA Computation Model

Informally

- Machine = a DFA NFA
- <u>Input</u> = string of chars

Machine accepts input if:

- Start in "start state"
- Repeat:
 - Read 1 char, change state according to transition fn
- Result =
 - "Accept" if last state is "Accept" state
 - "Reject" otherwise

Formally

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

M accepts w if

sequence of states r_0, r_1, \ldots, r_n in Q exists with

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots, n-1$ $r_{i+1} \in \delta(r_i, w_{i+1})$ This is now a set
- $r_n \in F$

DEFINITION

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Flashback: DFA Extended Transition Fn

Define the extended transition function: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Inputs:
 - Beginning state $q \in Q$
 - Input string $w = w_1 w_2 \cdots w_n$
- Output:
 - Ending state

(Defined recursively)

Empty string

• Base case: $\hat{\delta}(q, \varepsilon) = q$

First char

Remaining chars

• Recursive case: $\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1), w_2 \cdots w_n)$

Recursive call

Single transition step

NFA

Flashback: DFA Extended Transition Fn

Define the extended transition function: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Inputs:
 - Beginning state $q \in Q$
 - Input string $w = w_1 w_2 \cdots w_n$
- Output:
 - Ending state
 Set of ending states

(Defined recursively)

• Base case: $\hat{\delta}(q,\varepsilon) = q$ $\hat{\delta}(q,\epsilon) = \{q\}^{\epsilon}$

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

Result is set of states

First char

$$\delta(q, \mathbf{w}_1) = \{q_1, \dots, q_k\}$$

• Recursive case:
$$\hat{\delta}(q,w) = \hat{\delta}(\delta(q,w_1),w)$$
 $\hat{\delta}(q,w) = \bigcup_{i=1}^k \hat{\delta}(q_i,w_2\cdots w_n)$

Base case:
$$\hat{\delta}$$

Base case:
$$\hat{\delta}(q, \epsilon) = \{q\}$$

NFA Extended δ Example

Recursive case:
$$\hat{\delta}(q, w) = \bigcup_{i=1}^{n} \hat{\delta}(q_i, w_2 \cdots w_n)$$

where: $\delta(q, w_1) = \{q_1, \dots, q_k\}$

• $\hat{\delta}(q_0,\epsilon) =$

Stay in start state

We haven't considered empty transitions!

•
$$\hat{\delta}(q_0,0) =$$

Same as single step δ

Combine results of recursive calls with "rest of input"

•
$$\hat{\delta}(q_0, 00) =$$

•
$$\hat{\delta}(q_0, 001) =$$

122

Adding Empty Transitions

- Define the set ε -REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- Base case: $q \in \varepsilon$ -reachable(q)
- Inductive case:

A state is in the reachable set if ...

$$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$

... there is an empty transition to it from another state in the reachable set

ε -reachable Example

 ε -REACHABLE(1) = $\{1, 2, 3, 4, 6\}$

NFA Extended Transition Function

Define the extended transition function: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$

- Inputs:
 - Some beginning state q
 - Input string $w = w_1 w_2 \cdots w_n$
- Output:
 - <u>Set</u> of ending state<u>s</u>

(Defined recursively)

- Base case: $\hat{\delta}(q, \epsilon) = \{q\}$
- Recursive case:
 - If: $\delta(q,w_1)=\{q_1,\ldots,q_k\}$

• Then:
$$\hat{\delta}(q,w) = \bigcup_{i=1}^{\kappa} \hat{\delta}(q_i,w_2\cdots w_n)$$

NFA Extended Transition Function

Define the extended transition function: $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$

- Inputs:
 - Some beginning state q
 - Input string $w = w_1 w_2 \cdots w_n$
- Output:
 - <u>Set</u> of ending state<u>s</u>

(Defined recursively)

- Base case: $\hat{\delta}(q, \epsilon) = \{q\}$ ε -REACHABLE(q)
- Recursive case:

• If:
$$\delta(q,w_1)=\{q_1,\ldots,q_k\}$$
 \triangleright $\bigcup_{i=1}^n \varepsilon$ -reachable $(q_i)=\{r_1\ldots,r_m\}$

• Then:
$$\hat{\delta}(q,w)=igcup_{i=1}^{k}\hat{\delta}(q_i,w_2\cdots w_n)$$

Summary: NFAs vs DFAs

DFAs

- Can only be in <u>one</u> state
- Transition:
 - Must read 1 char

- Acceptance:
 - If final state <u>is</u> accept state

NFAs

- Can be in <u>multiple</u> states
- Transition
 - Can read no chars
 - i.e., empty transition
- Acceptance:
 - If one of final states is accept state

Last Time: Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{ good, bad \}$ and $B = \{ boy, girl \}$, then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$

Last Time: Concatenation is Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof: Construct a <u>new</u> machine

- How does it know when to switch machines?
 - Can only read input once

Let N_1 recognize A_1 , and N_2 recognize A_2 .

<u>Want</u>: Construction of N to recognize $A_1 \circ A_2$

N is an NFA! It <u>simultaneously</u>:

- Keeps checking 1st part with N_1 and
- Moves to N_2 to check 2^{nd} part

Concatenation is Closed for Regular Langs

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1.
$$Q = Q_1 \cup Q_2$$

- 2. The state q_1 is the same as the start state of N_1
- **3.** The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

N

Concatenation is Closed for Regular Langs

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1.
$$Q = Q_1 \cup Q_2$$

- 2. The state q_1 is the same as the start state of N_1
- **3.** The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(\mathbf{q}, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(\mathbf{q}, a) & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$

$$\delta_1(\mathbf{q}, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon$$

$$\delta_2(\mathbf{q}, a) & q \in Q_2.$$

N

Flashback: A DFA's Language

- For DFA $M=(Q,\Sigma,\delta,q_0,F)$
- M accepts w if $\hat{\delta}(q_0, w) \in F$
- M recognizes language A if $A = \{w | M \text{ accepts } w\}$
- A language is a regular language if a DFA recognizes it

An NFA's Language

- For NFA $N=(Q,\Sigma,\delta,q_0,F)$
- - i.e., if the final states have at least one accept state

• Language of
$$\mathit{N}$$
 = $\mathit{L}(\mathit{N})$ = $\left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: How does an NFA's language relate to regular languages

• <u>Definition</u>: A language is regular if a <u>DFA</u> recognizes it

Is Concatenation Closed for Reg Langs?

- Concatenation of DFAs produces an NFA
- To finish the proof, we must <u>prove</u> that NFAs *also* recognize regular languages.
- Specifically, we must <u>prove</u>:
 - NFAs ⇔ regular languages

Check-in Quiz 2/2

On gradescope