CS420

Nondeterminism and NFAs
Wednesday, February 2) 2022 Deterministic Nondeterministic

computation computation

UMass Boston Computer Science - start 0

5

: (’\:
£

R

» accept or reject * accept

reject ¢

e A kT ke e
I

%/{/{0«/{0@#(@/{13’

e HW 1
« due Sunday 2/6 11:59pm EST

« Grades so far published in Gradescope
« Use “regrade” feature for questions or regrade requests

« See Piazza post about asking HW questions
« Remember this is a math course
« So key terms have precise formal definitions
« Step 1to solving a problem is to understand all definitions

Last Tive: FOrmal Definition of NFAS

DEFINITION Compare with DFA:

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

A nondeterministic finite automaton | 1.Qisafniese called the states
2. Y is a finite set called the alphabet,

1S a S-tuple (Q, Z, (5, qo, F), where 3. 0: Q x X—Q is the transition function,
. . 4790 € Q is the start state, and
1. Q 1S a ﬁnlte Set Of states, /5. FCQis the set of accept states.
2. Y 1s a2 finite a]phabet, Different transition fn

3.0: Q x X.—>P(Q) is the transition function,
4. qp € Q js the start\state, and

5. F C (J)1s the set of\accept states.

NFA transition not required Transition results
to read input, . = X U {¢} In a set of states

last Time: NFA Example

« Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton
is a 5-tuple (Q, 3,46, qo, F), where
1. () is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qp € @ is the start state, and
5. F C Q is the set of accept states.

The formal description of N; is (@, X, 6, q1, F'), where

1. Q — {glaQQaq.?nqé.L}a 0: Q X ZEHP(Q)

B Empty transition
2. Y = {0,1}; (no input read)

3. 0 1s given as

Result of transition
Is a set

: Empty transition
1
4. q; is the start state, and : T —
5. F ={qs}.

Multiple 1 transitions No 0 transition

Running Programs, NFAs (JFLAP demo):
010110

NFA Computation Sequence

Symbol read
P —
1 __________________
Each step can
O branch into
An NFA accepts multiple states at
its input if at 1 - the same time!
least one path
ends in an] ----ooe
accept state
) e So this is an accepting

computation

thstback: DFA Computation Model

Informally Formally
« Machine = a DFA e M — (Q,E,5, C]O;F)
* Input = string of chars o W = WiWs - Wy

Machine accepts input if: M accepts w if

. " sequence of states ro, 1, ..., 7, in Q) exists with
« Start in “start state T
© fepeal : . ’(5(7“@' wi+1):Ti+1 fori =0,....n—1
« Read 1 char, change state according to transition fn ’ ’ ’ ’
e Result =
« “Accept” Iif last state is “Accept” state e 1y €F

« “Reject” otherwise

NFA

Hretback-DFA-COmputation Model

Informally Formally
« Machine = a BFA NFA e M — (Q7 >, 0, Q’O;F)
* Input = string of chars o W = WiWs - Wy

Machine accepts input if: M accepts w if

e Start in “start state” sequence of states ro, 1, ..., 7, in Q) exists with
* To = 4o
* Repeat: o S[o N for i — 0 1
Ty Wi = i1, 10t =VU,..., N —

« Read 1 char, change state according to transition fn

ri+1 € 5(7}‘, TU@‘_|_1) This is now a set

° Resu lt — zEFl[Z]TlON‘ N ’
. “Accept” if last state is “Accept” state * Ty €F o o
* “Reject” otherwise 1. Q is a finite set of stateg]

2. ¥ is a finite alphabet,

3.0: Q x ¥.—P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C (@ is the set of accept states.

Flstback DFA Extended Transition Fn

Define the extended transition function: § : QXX —Q

 Inputs:

- Beginning state ¢ € ()

 Input string W = wWiW2 - Wy
* Qutput:

* Ending state

(Defined recursively)
Empty string

» Base case: 5((]7 8) = q First char Remaining chars

e Recursive case: 5(Q7 w) — 5(5(% w1)7w2 T wn)

' Recursive call | ' Single transition step |

NFA

Fletback—DFA-Extended Transition

1>

Define the extended transition function: §
 Inputs:
» Beginning state ¢ € ()
 Input string W — W1wW3 - Wy
* Qutput:
+Fnding-state-Set of ending states

(Defined recursively)

- Base case: d(q,e) =q 6(q,€) = {q}

: 5/N N\ S(%
e Recursive case: 0\¢, W) = 010 \% Wl/v

Combine results of recursive calls for each g,

.)
%
Q

Fn

X X
M M

\ ﬂ
—
(

— P(Q)

Result is set of states

First char

0(q, wy) = {91,--

k
US qi, W2 -

=1

k)

W)

Base case: S(Q, e) = {q}

N FA EXteﬂded 6 Exam ple Recursive & _ OS (gi, wo -

0.1 case:
Start O 0 ._Q . where: 0(q,w1) = {q1,.--,qx}
’(0 }
° 5((]07 E) — Stay in start state

We haven’t considered
empty transitions!

o S(QO; 0) — Same as single step §

Combine results of recursive calls with “rest of input”

. 4(go,00) =

® S(QU, 001) =

Adding Empty Transitions

- Define the set e-REACHABLE(q)
« ...to be all states reachable from g via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

 Inductive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

e-REACHABLE Example

© /

a €

e-REACHABLE(1) ={1,2,3,4,6}

No empty transitions

NFA Extended Transition Function

Define the extended transition function: § : Q x ¥* — P(Q)
* Inputs:
« Some beginning state q
* Inputstring w = wiws - Wy
« Output:
« Set of ending states

(Defined recursively)

« Base case: (q,)— {q}
e Recursive case:

- If 0(q,w1) ={q1,. .., q}

k
. Then: 0(q, w) = U 0(qs, wa - - - wy,)

With empty transitions

NFA Extended Transition Function

Define the extended transition function: § : Q x ¥* — P(Q)
* Inputs:
« Some beginning state q
* Inputstring w = wiws - Wy
« Output:
« Set of ending states

(Defined recursively)

. Base case: 0(q,€) = {g} 5‘REACHABLE(Q)
e Recursive case:

k

. If 5((]’ ’wl) — {Q17 e (]k} o U e-REACHABLE(q;) ={r1...,"m}

1=1

()

km
. Then: 0(g,w) = U 6(q;, wa -+ - wp)
i=1

summary: NFAs vs DFAS

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition

« Must read 1 char Can read no chars

* |.e., empty transition

* Acceptance: * Acceptance:
« If final state is accept state * If one of final states is accept state

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONCaAtenation of Languages

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

Ao B ={goodboy, goodgirl, badboy, badgirl}

Concatenation: Ao B = {zy|z € Aand y € B}

last Tine: CONcCatenation I1s Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof: Construct a new machine
« How does 1t know when to switch machines?
« Can only read input once

N, N, Concatentation

_ oo©/\ ° © ©/

N is an NFA! It simultaneously:

- Keeps checking 15t part with N,
and

- Moves to N, to check 2"d part

Let N; recognize Ay, and Na recognize As.

Want:Construction of N to recognize A; o A
e = “empty transition” = reads no input

N =

Allows N to be in both machines at once N\

4)

().
O ° OfH30 oo
O~ o

Concatenation is Closed for Regular Langs

PROOF

Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
Ny = (Q2, X, 02, q2, F>) recognize As.

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1.) = Q1 U Q> o ©

. ~O ©| [0 <09
2. The state ¢ is the same as the start state of [V; °° B oo ©O
3. The accept states F5 are the same as the accept states of [V ﬂ

4. Define § so that for any ¢ € @ and any a € X,

Concatenation is Closed for Regular Langs

PROOF
, Wait, Is this true?
Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
Ny = (Q2, X, 02, q2, F>) recognize As.

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1. Q — Ql U Q2 o ©

. —() @ (—»O o
2. The state ¢; is the same as the start state of Ny °° 10 o o
3. The accept states F; are the same as the accept states of N ﬂ
4. Define § so that for any ¢ € @ and any a € X, N

/
% ? E
? {O OOO EEEE% o o
5(q?a):< O O
-

4

L 02(@ 222

Fhashback: A DFA'S Language
« For DFA M = (Q, X, 6, qo, F)

o M accepts w it 0(qo, w) € F

* M recognizes language A it A = {w| M accepts w}

A language is a regular language if a DFA recognizes it

An NFA's Language

*For NFA N = (@, X, 6, qo, F)

intersection accept states

e N accepts w if 0(qg,w) N F £) not empty
« |.e,, If the final states have at least one accept state

 Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: How does an NFA's language relate to regular languages
« Definition: A language is regular if a DFA recognizes it

s Concatenation Closed for Reg Langs?

« Concatenation of DFAs produces an NFA

 To finish the proof, we must prove that NFAs also recognize
regular languages.

« Specifically, we must prove:
* NFAs < regular languages

Check-in Quiz 2/2

On gradescope

