CS420

NFA -> DFA

Monday, February 7, 2022
UMass Boston CS

A nondeterministic finite automaton A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where
is a S-tuple (Q, 2,4, qo, F'), wh _ ,
.p (Q %0, '), where 1. () is a finite set called the states,
1. @ is a finite set of states, - 2. Y is a finite set called the alphabet,
2. Y is a finite alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

3.6: Q x X.—>P(Q) is the transition function,
4. go € Q is the start state, and
5. F' C @ is the set of accept states.

Arnoancements
e HW 1in

* HW 2 out
* Due Sun 2/13 11:59pm EST

« Ask HW questions publicly on Piazza
« So the entire class can participate and benefit from the discussion
- (Make it anonymous if you want to)

 Tip: Designing a machine = programming

Last [ine

=
Q)
>
o

Ny

4] @\
0 © ©

N O

N =

Ny

- \
—() o O ©
N © 9 ©/

Let Ny recognize Ap, and N recognize As.

Construction of N to recognize A; o As

e = “empty transition” =

reads no input

Concatentation

Does this prove
concatentation
Is closed for
regular
languages?

Allows NFA N to be “in” both machines at once

() e
O+
O

~

Fhashback: A DFA'S Language
« For DFA M = (Q, X, 6, qo, F)

o M accepts w it 0(qo, w) € F

* M recognizes language A it A = {w| M accepts w}

Definition: A language is a regular language if a DFA recognizes it

An NFA's Language

*For NFA N = (@, X, 6, qo, F)

intersection accept states

e N accepts w if 0(qg,w) N F £) not empty
« |.e,, If the final states have at least one accept state

 Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: How does an NFA's language relate to regular languages?
All we know so far: A language is regular if a DFA recognizes it

So 1s Concatenation Closed for Reg Langs?

« Concatenation of DFAs produces an NFA
« But a language is only regular if a DFA recognizes it

 To finish the proof that concat is closed ...
... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs < regular languages

How to Prove a Statement; X<& Y

e X&Y = “XifandonlyifY" = XiffY = X<=>Y
* Proof at minimum has 2 required parts:

1. =>i1fX,thenY
e “forward” direction
« assume X, then use it to prove Y

2. <iIfY thenX

e “reverse” direction
« assume Y, then use it to prove X

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L is regular, then some NFA N recognizes it.
« Easier
« We know: If L is regular, then a DFA exists that recognizes it.
* S0 to prove this part: Convert that DFA to an equivalent NFA! (see HW 2)

& If an NFA N recognizes L, then L is regular.
* Harder
« We know: for L to be regular, there must be a DFA recognizing it
« Proof Idea for this part: Convert given NFA N to an equivalent DFA

“equivalent” = “recognizes the same language”

How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, :]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

1. Q is a finite set of states,

Proof idea: . :

Lot each “tate” of 2. Y is a finite alphabetz N |
the DFA be a set of 3. 0: Q x ¥.—>P(Q) is the transition function,
states in the NFA 4. qo € @ 1s the start state, and

5. F C @ is the set of accept states.

Symbol read @ Start

T
In a DFA, all these
{ e @ states at each step of
‘ \ NFA computation must
be only one state
O _____________
{ e (o (& So design a state in
the DFA to be a
@ @ @ @ set of NFA states!
T
This 1s similar to the proof
o @ @ @ @ @ strategy from

“Closure of union” where:

@ @ a state = a pair of states

Convert NFA-DFA, Formally
- Let NFAN= (Q, 22, 3, qo, F')

 An equivalent DFA M has states Q' = P(Q) (power set of Q)

The NFA N4

A DFA D that is equivalent to the NFA N,

No empty transitions

Have: NFA N = (Q, X, 0, qo, F)
Want: DFA M = (Q', X, ¢, qo’, F')

P(Q) A state for M is a set of states in N

2. F()I‘ R - Q’ and a € Z R = a state in M = a set of states in N
5, R CL U 5 T, a Next state for DFA state R =

3. QQ, —
4. ' =

next states of each NFA staterin R

{90}

{R € @Q'| R contains an accept state of NV}

thstback: ADdINg Empty Transitions

- Define the set e-REACHABLE(q)
« ...to be all states reachable from g via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

* Inductive case:

A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

With empty transitions

Have: NFA N = (Q, 2,9, qo, F)
Want: DFA M = (Q’, 3,9, qo’, F')

Almost the same, except ...

2. ForREQ’andaEZ

3" (R, a) U 46— e-REACHABLE(S(r, a))
recR \

Requires extending the fn
/
3. qo" = %%}- e-REACHABLE(qp)

to sets of states (see HW 2)
4. I = {R € ()| R contains an accept state of N}

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L is regular, then some NFA N recognizes it.
« We know: If L is regular, then a DFA recognizes it.
« We show: How to convert a DFA to an equivalent NFA

& If an NFA N recognizes L, then L is regular.
« We know: For L to be regular, there must be a DFA recognizing it
:>- We show: How to convert NFA Nto an equivalent DFA ...
* ... using the NFA-DFA algorithm we just defined! m

Union: AUB ={z|z € Aorz € B}

thstback: UNioN 1S Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, it A; and As are regular languages, so is A; U As.

Proof:

« How do we prove that a language is regular?
« Create a DFA or NFA recognizing it!

 Create machine combining the machines recognizing A, and A,
* Should we create a DFA or NFA?

Proof, with DFA

thstback: UNioN 1S Closed For Regular Langs

Proof
Gi . My = (Q1,%,01,4q1, F1), recognize Ay,
e Ulven:. .
My = (Q2, X, 02, q2, F2), recognize A,

« Construct: a new machine M = (Q, X, 9, qo, F') using M, and M,

» states of M: Q={(r1,m2)|m € Qrand rs € Q2} =0, xQ, Sﬁtgt;ntéw
This set is the Cartesian product of sets Q1 and Q2 | "y state

« M transition fn: 5((?"1, r9), (L) — (51 (r1,a),d2(rs, (L)) M step =

a step in M, + a step in M,

« M start state: (q1,92)

Accept if either M, or M, accept
* M accept states: F = {(ry,r3)|r1 € Fy orry € Fy}

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

N

Add new start state,
and e-transitions to
old start states

L

~

Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

Construct N = (Q, X, d. qo, F') to recognize A; U As.
1. Q@ ={q}UQ1UQa.
2. The state gg 1s the start state of V.

3. The set of accept states F' = F} U F5.

Alternate Proof, with NFAs

Nl/ﬁ ——
Vo -0
08© |:> © 08©

NQ/_)OQ‘ € @/ ©\
OO © e ©

o> O b O

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

PROOF i ’ |

©o ke

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and 00 © E/ ~0O
Ny = (Q2, %, 02, q2, F») recognize A,. \O_/ » Q \ ©

Construct N = (Q, X, 6, qo, F') to recognize A; U As. . 00 NS O

B s, O

1. Q ={q}UQ1UQ2. ke O %0

2. The state gg 1s the start state of V.

3. The set of accept states F' = F} U F5.
4. Define ¢ so that for any ¢ € Q and any a € X,

(01(q q €
S(ga)={ 1 LED
? g=qgoanda =€
? q=qoanda # € 10

Concatenation is Closed for Regular Langs

PROOF

Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
Ny = (Q2, X, 02, q2, F>) recognize As.

Construct N = (Q, X, 9, q1, F») to recognize A; o A N, N,
1.) = Q1 U Q> o ©
. —~O © ~O oo
2. The state ¢; is the same as the start state of Ny °° O o o
3. The accept states F; are the same as the accept states of N ﬂ
4. Define § so that for any ¢ € @ and any a € X, N
/
(41(q, a) q€ @Qiand g ¢ Fy O
O ° Or0 oo
5(q a)_<(51(q,a,) g€ Fianda # ¢ IS [|)
| 01(¢;a) U{q2} g€ Franda=¢ L
\52((]7&) q < Q2' ﬂ ’.y? -

List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

» Kleene Star (repetition)

Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)

Kleene Star

N
4 e
s | 90O ©
© ©
\ O Y,
New start (and accept) state,
e-transitions to old start state
\ Old accept states

e-transition to old
start state

Kleene Star 1s Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.

Kleene Star 1s Closed for Regular Langs

PROOF Let N1 = (Q1,%,01,q1, 1) recognize A;. M

Construct N = (Q, 3, 4, qo, F') to recognize Aj. _,O

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

‘@_

=

o

=

O
O

O
O

Kleene Star 1s Closed for Regular Langs

PROOF Let Ny = (Q1,%, 01,41, F1) recognize A;.
Construct N = (Q, 3, 4, qo, F') to recognize Aj.

1. Q@ ={q} U
2. The state qq is the new start state.

3. F={q}tVF
4. Define § so that for any g € @ and any a € X,

Ny

.

g€ @Qrand g & Fy

g€ Fianda # ¢

d(q,a) = g€ Fianda=¢

g=¢qoanda=¢€

N N N N N

¢ = qo and a # €.

&

~

Q0O

/
Eﬁé
O
©)
-

172

Many More Closed Operations on Regular Languages!

« Complement

* Intersection
 Difference

» Reversal

« Homomorphism

e (See HW?2)

Why do we care about these ops?

e Union
e Concat
e Kleene star

* The are sufficient to represent all regular languages!

* |.e., they define regular expressions

$o Far: Regular Language Representations

0,1

State diagram
(NFA/DFA)

A practical application:
text search ... it doesn’t fit!

1.

These define a computer
(program) that finds strings

Formal 1. Q = {Q1,Q2aQ3},

Find and Replace v E1;X

description 2y {0,1}’
2 3. J is described as

containing 001

Reglace with REP(1) General Commands Manual GREP(1)

a1 1|91 Qg2 Z=\1; A L _
grep, egrep, fgrep, rgrep - prmt 11"&5 matchmg a pattern

q2 | 43 qz2 Look in: SYNOPSTS
= grep [OPTIONSE PATTERN [FILE.Q.]
- re| OPTION -e PATTERN FILE FILE. ..
q3 | 92 [Current Project = : ' s |]
DESCRIPTION
A 2 grep searches the named input FILEs (or standard input if no files are
4 . th d E] Flnd gptlons named, or if a single hyphen-minus (-) is given as file name) for lines
. q1 IS e Start State, aIl containing a match to the given PATTERN. By default, grep prints the
1 matching lines.
"] Match case

5. F = {g).

bk In addition, three variant programs egrep, fgrep and rgrep are
[IMatch whole available. egrep is the same as grep -E. fgrep is the same as
= S grep -F. rgrep is the same as grep -r. Direct invocation as either
egrep or fgrep is deprecated, but is provided to allow historical
applications that rely on them to run unmodified.

[use:
Regular expressions v

L Find Next] l Replace I

| Search up

3. XT001XF

Need a more concise notation
|

l Replace All j

Regular Expressions Are Widely Used

Perl
Python
Java

Every lang!

NAME

perlre - Perl regular expressions

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Qui
Table of Contents re — Regular expression operations
re — Regular expression
operations
= Regular Expression Source code: Lib/re.py
Syntax

= [odule Contents

= Regular Expression This module provides regular expression matching operations similar to those found in Perl.

java.util.regex

Class Pattern

java.lang.Object
java.util.regex.Pattern

176

Regular Expressions: Formal Definition

R is a regular expression if R is
1. a for some a in the alphabet 3, (A lang containing a) length-1 string
2. &, | (Alang containing) the empty string

3. 0, | Theempty set (ie, a lang containing no strings)
union 4. (R, U Ry), where R; and R; are regular expressions,
concat 5, (R; o Rs), where R; and Rs are regular expressions, or
star 6. (R]), where R; is a regular expression.

Base cases plus union, concat, and Kleene
star can express any regular language!

(But we have to prove it)

Regular Expression: Concrete Example

Entire reg expr: represents lang whose
strings are strings from these langs
concat’ed together (implicit concat op)

the lang {“0”, "1"} (O L 1)0* the lang {*”, 70", “00”, ...}

the lang {“0”} the lang {“1”}
» Operator Precedence:

 Parens

e Star

o (° ° . °)

CO n Cat SO m etl m eS I m p ll C It R is a regular expression if R is

° U n io N ; Z for some a in the alphabet X,
3.0,
4. (R1 U R»), where R; and Rj are regular expressions,
5. (R1 o Ry), where Ry and R are regular expressions, or
6. (R7), where R, is a regular expression.

Check-in Quiz 2/7

On gradescope

