UMB CS 420

Regular Expressions
Wednesday, February 9, 2022

Expressions
Small Re gul r

Expression Expression Express on

o o U

$4.23 A2V $6.23

%/{/{0«/{0@#(@/{13’

« HW 2 due Sunday 2/13 11:59pm EST

o Far Reg

1

State diagram
(NFA/DFA)

Elormalt, 1. Q — {q19 q23Q3}3
escription 2. % = {o0.1},
2 3. ¢ i1s described as

4. g1 is the start state, and

5. F = {go}.

3. XF001XF

lar Language Representations

A practical application:

(it doesn't fit!)

text search

These define a computer
(program) that finds
strings containing 001

e /Zi\/:lac_evgi’ ek 4 o]
qr | 91 QG2 Z=\1; -]
q2 | 43 q2 Look in:
g3 | 92 42, |Current Project v]

(=] Find gptions
| Match case
| Match whole word
"] Search up
[Regular EXpressions vJ
Need a more concise |
(textual) notation Lpodtet |l Boplce |

22
\ Find and Replace

\iﬁick Find » | A% Quick Replace ~
Finé\wvhat:

Replace All

l

Regular Expressions Are Widely Used

NAME

°
¢ U n IX erlre - Perl regular expressions
p g p grep, egrep, fgrep, rgrep - print lines matching a pattern
SYNOPSIS
grep [OPTIONSE PATTERN [EILE.Q.]
* Per DESCRIPTION g ol (S
DESCRIPTION
grep searches the named input FILEs (or standard input if no files are
* Python
* JdVd

General Commands Manual GREP(1)

named, or if a single hyphen-minus (-) is given as file name) for lines

This page describes the syntax of reqular expressions in Perl. containing a match to the given PATTERN. By default, grep prints the

matching lines.

—

@ Python » | English v||3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Quil

Table of Contents re — Regular expression operations

re — Regular expression

operations

= Regular Expression Source code: Lib/re.py
Syntax .

. Module Java.util.regex

= Regulal vides regular expression matching operations similar to those found in Perl.

Class Pattern

java.lang.Object
java.util.regex.Pattern

179

last Tire: Wy DO We Care These Ops Are Closed?

e Union
e Concat
e Kleene star

* The are sufficient to represent all regular languages!

* |.e., they are used to define regular expressions

Regular Expressions: Formal Definition

R is a regular expression if R is — :
This Is a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where R; and R are regular expressions,
. (R1 0 R2), where Ry and R» are regular expressions, or
. (R}), where R; is a regular expression.

181

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: " This is a recursive definition:
ode { 4 W | Node used before it's defined

- base case and)
_ mauEe caee data; > (but must be “smaller”)
Node next;

(with a “smaller” object)

182

Regular Expressions: Formal Definition

R is a regular expression if R is
1. a for some a in the alphabet 3, (A lang containing a) length-1 string

3 Base 2 l . n :
Cases . €, | (Alang containing) the empty string
3. 0, | Theempty set (ie, a lang containing no strings)
union —~4, (R; U R»), where R; and R are regular expressions, :
, 3 Recursive
concat 5, (R; o R2), where Ry and R are regular expressions, or | cases
star 6. (R]), where R; is a regular expression.

Regular Expression: Concrete Example

Entire regular expr: language whose
strings come from these languages
concat’ed (implicit op) together

the language {“0”,"1"} (O U1) 0* the language {*, "0, “00% ...}

the language {“0”} the language {“1"}

» Operator Precedence:
 Parentheses
 Kleene Star

. R is a regular expbression if R is
 Concat (sometimes o, sometimes implicit) I,Gfiusomefmthealphabetg,
e Union 2 &

3. 0,

4. (R1 U Ry), where Ry and R; are regular expressions,

5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.

Regular Expressions = Regular Langs?

R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. €,

@7

3 Base
Cases

- R1 U R»), where R and R» are regular expressions,
3 Recursive 2) L 2 54 P

Cases

3.
4. (
5. (R1 o Ra), where Ry and Ry are regular expressions, or
6. (R7), where R; is a regular expression.

Base cases + union, concat, and Kleene star
can express any regular language!

(But we have to prove it)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language is regular, it is described by a reg expression

&< If a language is described by a reg expression, it is regular

« Easler How to show that a
« For a given regular expression, convert to equiv NFA! language Is regular?

e (Hint: we mostly did this already when discussing closed ops)
Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language is regular, it is described by a reg expression
« Harder
« Need to convert an DFA or NFA to an equivalent Regular Expression
e To do so, we need another kind of finite automata: a GNFA

&< If a language is described by a reg expression, it is regular
 Easier
V] « Convert the regular expression to an equivalent NFA!

Generalized NFAs (GNFASs)

A regular NFA is a GNFA
abUba | with only single character

regular expr transitions

Goal: convert GNFAs
to Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function

On GNFA input G:
* If G has 2 states, return the regular expression transition, e.g.:

Equivalent regular expression

@ (R) (R)* (Ry) U (R) GNFA

Could there be
less than 2 states?

GNFA>RegEXpr Preprocessing

* First modifies input machine to have:

Does this change the

ine?
. New start state: language of the machine?

« No incoming transitions
e ctransition to old start state

* New, single accept state:
« With e transitions from old accept states

GNFA->RegExpr function (recursive)

On GNFA input G:
oase |+ If G has 2 states, return the regular expression transition, e.g.:

0, (Ry) (Ry)* (R3) U (Ry)
Recursive Z Recursive definitions have;:
Case

- base case and
e Else: - recursive case

. “Rip Outn one state (Wlth a “smaller” ObjeCt)
« “Repair” the machine to get an equivalent GNFA G’
« Recursively call GNFA»RegExpr(G)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
before and repeat until only 2 states remain

GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before

GNFA->RegExpr: “Rip/Repair” step

After: still two “paths” from g; to g;
1. Not through q,,

1y

Rl @
R

2

before

2. Through g,

T~

(121) (Ro)™ (123)

0

after

U 1:R4)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through g,;, has 3 transitions

- One s self loop

GNFAéRegExpr: “Rip/Repair” step

After:

q;

Rl @
R

2

concat

before

Before:

Self loop becomes star operation
Others are concat’ed together

(121) (Ro)™ (123)

U (Ry)

after

Star operation

path through q,;, has 3 transitions

One is self loop

GNFA->RegExpr: Rip/Repair “Correctness”

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

before

GNFA>RegExpr “Correctness”

* Where “Correct” / “Equivalent” means:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

* .e, GNFA»RegEXxpr must not change the language!
 Key step: the rip/repair step

GNFA->RegExpr: Rip/Re

Must show these are
equivalent

(Ry) (Ry)™ (R3)
&)
e ’l after

nalr “Correctness”

U (Ry)

Must prove:

2

before

R, R,
e 2 Ccases:
@ 1.
R

2.

« Every string accepted before, is accepted after

Accepted string does not go through q,,,

Strlng goes through g,

| Acceptance unchanged?

- Acceptance unchanged (both use R, transition part)

* Yes, via our previous reasoning

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language is regular, it is described by a regular expr
« Need to convert DFA or NFA to Regular Expression
] « Use GNFA>RegEXxpr to convert GNFA to equiv regular expression!

&< If a language is described by a regular expr, it Is regular
V] « Convert regular expression to equiv NFA! m

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:
DFA
So we also have another way to prove - NFA

things about regular languages! - Regular Expression

How to Prove A Language Is Regular?

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3ishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Kinds of Mathematical Proof

 Proof by construction

 Proof by induction
« Use this when working with recursive definitions

Proof by Induction

To prove that a Statement is true for a recursively defined thing x:
1. Prove Statement for the base case of x (usually easy)

2. Prove Statement for the inductive (recursive) case of x:

 Assume the induction hypothesis (IH):
* l.e, Statement is true for some “smaller” x,_ ..
« E.g,ifxis string, then “smaller” = length of string

 Use IH (and other facts) to prove Statement for “larger” x
« Usually involves a case analysis on how to go from x to x

smaller

« Why can we assume IH Is true???
« Because we can always start at base case,
« Then use it to prove for slightly larger case,
« Then use that to prove for slightly larger case ...

Natural Numbers Are Recursively Defined

A Natural Number is:
e ZEro
* Orn+ 1, wherenis a Natural Number

This definition is valid because recursive reference is “smaller”

So proving things about Natural Numbers requires induction!

Proof By Induction: Example (sipser ch o)

t__
Prove true: P, = PM!—Y M
M —1

= loan balance after t months
* t = # months
« P =principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

Proof By Induction: Example (sipser ch o)

Prove true: P, = PM' —-Y

M —1 —
An inductive proof exactly
] . . follows the recursive definition
Proof: by induction on natural number ¢t (here. natural numbers) that the

induction is “on”

Base Case, t = 0: A Natural Number is:
* Goal: Show P, =P - zero
. * Orn+1,wherenisa
* Proof of GOEjDL PAO Y MO —1 = natural number
0 M—1)"
Plugint=0

Simplify, to get to goal statement

Proof By Induction: Example (sipser ch o)

An inductive proof exactly follows the
7\4 t 1 recursive definition (here, natural

Prove true: Pt — PMt o Y numbers) that the induction is “on”
M — 1 A Natural Number is:

- zero
m) Orn+1,wherenisa

Inductive Case: t>0 aatural number
* Inductive Hypothesis (IH), assume statement true for some ¢t =k

“Connect together” known |, == PM" —Y

definitions and statements M —1 Mk+1 —1
*\Goal statement to prove, for t = k+1 P = PMFTL Y (71)
Plug in IH B
« Proof of Goal: Simplify, to derive goal statement
Mk 1 kb1 Mk:Jrl —1
pros = Py = [ear -y (M2 gy ey (M

Definition of P,

Homomorphisms

A bomomorphism is a function f: X—— 1 from one alphabet to another.

« Assume fcan be used on characters, strings, and languages

« £.g, like a secret decoder!
* f(X7) ->"c”
* f(Py") ->"a"
 f(°Z7) >
* f("xyz") -> “cat”

Homomorphisms Closed Under Regular Languages

Thm: If a language A is regular, and fis a homomorphism, ...

... then f{A) Is a regular language

A bomomorphism is a function f: X——T from one alphabet to another.

How to Prove A Language Is Regular?

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3ishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Homomorphisms Closed Under Regular Languages

Thm: If a language A is regular, and fis a homomorphism, ...
« If A 1s regular then it has a regular expression R

... then f{4) Is a regular language

« To show that f{A) Is a regular language, we create a regular
expression representing it (using R)

A bomomorphism is a function f: X——T from one alphabet to another.

Homomorphisms Closed Under Regular Languages

Thm: If language A is regular, and fis a homomorphism, then f{A) Is regular

Proof: By induction on R, the regular expression for A | Aninductive proof
— exactly follows the

recursive definition that

R is a regular expression if R is the induction is “on”
e 1. a for some a in the alphabet X« [rr 2, then) hasa
regular expression f(a)

Cases | 2. &, and is thus regular

3. 0,

4. (R1 U Ry), where R; and R are regular expressions,

3 Recursive :

cases Y- (R1 0 R2), where Ry and Ry are regular expressions, or

6. (R7), where R; 1s a regular expression.

1

Homomorphisms Closed Under Regular Languages

Thm: If language A is regular, and fis a homomorphism, then f{A) Is regular

Proof: By induction on R, the regular expression for A | Aninductive proof
— exactly follows the

recursive definition that

R is a regular expression if R is the induction is “on”

1. a for some a in the alphabet X,

3 Base

Cases | 2. &, Inductive case # 1
3. 0, R=R, UR,
4. (R1 U R3), where R; and R are regular expressions,

3 Recursive :

cases Y- (R1 0 R2), where Ry and Ry are regular expressions, or

6. (R7), where R; 1s a regular expression.
1

Homomorphisms Closed Under Regular Languages

Thm: If language A is regular, and fis a homomorphism, then f{4) is regular
Proof: By induction on R, the regular expression for A

Inductive Case #1: R=R, U R, where R,, R, describe “smaller” reg langs A4,, 4,

|H (assume the theorem is true for “smaller” languages)
- If language A, Is regular, then f{4,) is regular
- If language A, is regular, then f{4,) is regular

Goal: If language A, U A, Is regular, then f{A, U 4,) Is regular

Proof of Goal (piece together known definitions and statements!)
« A, UA,)=fl4,) Uf4,) (because fand U don't affect each other)
* f[A,)is regular (because of IH)
* flA,) is regular (because of IH)
* f[A) U f(4,)is regular (because union is closed for regular languages)

In-Class quiz 2/9

See gradescope

