UMB CS 420 Regular Expressions

Wednesday, February 9, 2022

Announcements

• HW 2 due Sunday 2/13 11:59pm EST

So Far: Regular Language Representations

A <u>practical application</u>: **text search**

Formal description

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

These define a computer (program) that finds strings containing **001**

	0	1	
q_1	q_1	q_2	
q_2	q_3	q_2	
q_3	q_2	$q_2,$	

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

3. $\Sigma^* 001 \Sigma^*$

Need a more concise (textual) notation

Regular Expressions Are Widely Used

- Unix
- Perl
- Python
- Java

Last Time: Why Do We Care These Ops Are Closed?

- Union
- Concat
- Kleene star

- The are sufficient to represent <u>all regular languages!</u>
- I.e., they are used to define regular expressions

Regular Expressions: Formal Definition

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

This is a <u>recursive</u> definition

Recursive Definitions

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}
```

This is a <u>recursive definition:</u>
Node used before it's defined
(but must be "smaller")

Regular Expressions: Formal Definition

Regular Expression: Concrete Example

• Operator <u>Precedence</u>:

- Parentheses
- Kleene Star
- Concat (sometimes •, sometimes implicit)
- Union

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expressions = Regular Langs?

R is a **regular expression** if R is

1. a for some a in the alphabet Σ ,

3 Base Cases

- $2. \ \varepsilon,$
- **3.** ∅,

3 Recursive Cases

- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Base cases + union, concat, and Kleene star can express <u>any regular language!</u>

(But we have to prove it)

Thm: A Lang is Regular iff Some Reg Expr Describes It

⇒ If a language is regular, it is described by a reg expression

- ← If a language is described by a reg expression, it is regular
 - Easier
 - For a given regular expression, convert to equiv NFA!

How to show that a language is regular?

(Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegExpr→NFA

R is a *regular expression* if R is

1. a for some a in the alphabet Σ ,

5. $(R_1 \circ R_2)$, where R_1 and R_2 and

6. (R_1^*) , where R_1 is a regular exp

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a reg expression
 - Harder
 - Need to convert an DFA or NFA to an equivalent Regular Expression
 - To do so, we need another kind of finite automata: a GNFA
- ← If a language is described by a reg expression, it is regular
 - Easier
- Convert the regular expression to an equivalent NFA!

Generalized NFAs (GNFAs)

• GNFA = NFA with regular expression transitions

GNFA→RegExpr function

On GNFA input G:

• If G has 2 states, return the regular expression transition, e.g.:

Could there be less than 2 states?

GNFA→RegExpr Preprocessing

• First modifies input machine to have:

Does this change the language of the machine?

- New start state:
 - No incoming transitions
 - ε transition to old start state

- New, single accept state:
 - With ϵ transitions from old accept states

GNFA→RegExpr function (recursive)

On GNFA input G:

Base Case

• If G has 2 states, return the regular expression transition, e.g.:

Recursive Case

- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

before

To <u>convert</u> a GNFA to a regular expression: "rip out" state, then "repair", and repeat until only 2 states remain

before

before

before

Before:

- path through $q_{\rm rip}$ has 3 transitions
- One is self loop

GNFA→RegExpr: Rip/Repair "Correctness"

before

 q_j

GNFA→RegExpr "Correctness"

• Where "Correct" / "Equivalent" means:

LangOf (
$$G$$
) = LangOf ($GNFA \rightarrow RegExpr(G)$)

- i.e., GNFA→RegExpr must not change the language!
 - Key step: the rip/repair step

GNFA→RegExpr: Rip/Repair "Correctness"

before

Must <u>prove</u>:

 q_i

- Every string accepted before, is accepted after
- 2 cases:
 - Accepted string does not go through $q_{\rm rin}$

 $(R_1) (R_2)^* (R_3) \cup (R_4)$

after

- Acceptance unchanged (both use R_4 transition part)
- 2. String goes through q_{rin}
 - Acceptance unchanged?
 - · Yes, via our previous reasoning

 q_j

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a regular expr
 - Need to convert DFA or NFA to Regular Expression
- Use GNFA→RegExpr to convert GNFA to equiv regular expression!
- ← If a language is described by a regular expr, it is regular
- Convert regular expression to equiv NFA!

Now we may use regular expressions to represent regular langs. So a regular

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

So we also have another way to prove things about regular languages!

How to Prove A Language Is Regular?

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Kinds of Mathematical Proof

- Proof by construction
- Proof by induction
 - Use this when working with <u>recursive</u> definitions

Proof by Induction

To prove that a *Statement* is true for a **recursively defined thing** *x*:

- 1. Prove Statement for the base case of x (usually easy)
- 2. Prove *Statement* for the <u>inductive</u> (recursive) case of *x*:
 - Assume the induction hypothesis (IH):
 - I.e., Statement is true for some "smaller" x_{smaller}
 - E.g., if x is string, then "smaller" = length of string
 - Use IH (and other facts) to prove *Statement* for "larger" x
 - Usually involves a <u>case analysis</u> on how to go from x_{smaller} to x
- Why can we assume IH is true???
 - Because we can always start at base case,
 - Then use it to prove for slightly larger case,
 - Then use that to prove for slightly larger case ...

Natural Numbers Are Recursively Defined

A Natural Number is:

- zero
- Or n + 1, where n is a Natural Number

This definition is valid because recursive reference is "smaller"

So proving things about Natural Numbers requires induction!

Proof By Induction: Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

- P_t = loan balance after t months
- *t* = # months
- *P* = principal = original amount of loan
- M = interest (multiplier)
- Y = monthly payment

Proof By Induction: Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

<u>Proof</u>: by **induction** on natural number $t \leftarrow$

An inductive proof exactly follows the recursive definition (here, natural numbers) that the induction is "on"

Base Case, t = 0:

- Goal: Show $P_0 = P$

• Proof of Goal:
$$P_0 = PM^0 - Y\left(\frac{M^0 - 1}{M - 1}\right) = P$$

A Natural Number is:

- zero
- Or *n* + 1, where *n* is a natural number

Simplify, to get to goal statement

Proof By Induction: Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

An inductive proof exactly follows the recursive definition (here, natural numbers) that the induction is "on"

A Natural Number is:

- zero
- Or *n* + 1, where *n* is a natural number

Inductive Case: t > 0

• Inductive Hypothesis (IH), assume statement true for some t = k

$$P_k = PM^k - Y\left(\frac{M^k - 1}{M - 1}\right)$$

Plug in IH

$$P_{k+1} = P_k M - Y =$$
Definition of P_{k+1}

$$PM^{k} - Y\left(\frac{M^{k} - 1}{M - 1}\right)$$

"Connect together" known definitions and statements
$$P_k = PM^k - Y\left(\frac{M^k - 1}{M - 1}\right)$$
• Goal statement to prove, for $t = k+1$:
$$P_{k+1} = PM^{k+1} - Y\left(\frac{M^{k+1} - 1}{M - 1}\right)$$

• Proof of Goal:
$$P_{k+1} = P_k M - Y = \begin{bmatrix} Plug \text{ in IH} \\ PM^k - Y \left(\frac{M^k - 1}{M - 1}\right) \end{bmatrix} M - Y = PM^{k+1} - Y \left(\frac{M^{k+1} - 1}{M - 1}\right)$$

Homomorphisms

A **homomorphism** is a function $f: \Sigma \longrightarrow \Gamma$ from one alphabet to another.

- Assume f can be used on characters, strings, and languages
- E.g., like a secret decoder!
 - f("x") -> "c"
 - f("y") -> "a"
 - f("z") -> "t"
 - f("xyz") -> "cat"

<u>Thm</u>: If a language A is regular, and f is a homomorphism, ...

... then f(A) is a regular language

A **homomorphism** is a function $f: \Sigma \longrightarrow \Gamma$ from one alphabet to another.

How to Prove A Language Is Regular?

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Thm: If a language A is regular, and f is a homomorphism, ...

• If A is regular then it has a regular expression R

... then f(A) is a regular language

• To show that f(A) is a regular language, we create a regular expression representing it (using R)

A **homomorphism** is a function $f: \Sigma \longrightarrow \Gamma$ from one alphabet to another.

<u>Thm</u>: If language A is regular, and f is a homomorphism, then f(A) is regular

Proof: By induction on R, the regular expression for A

An inductive proof
exactly follows the
recursive definition that
the induction is "on"

R is a **regular expression** if R is

1. a for some a in the alphabet $\Sigma_{,\kappa}$

 $2. \varepsilon,$

3. ∅,

If R = a, then f(A) has a regular expression f(a) and is thus regular

- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

3 Recursive Cases

3 Base

Cases

<u>Thm</u>: If language A is regular, and f is a homomorphism, then f(A) is regular

Proof: By induction on R, the regular expression for A

An inductive proof
exactly follows the
recursive definition that
the induction is "on"

R is a **regular expression** if R is

1. a for some a in the alphabet Σ ,

3 Base Cases

Cases

 $2. \varepsilon,$

Inductive case # 1:

 $3. \emptyset$

 $R = R_1 \cup R_2$

- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.

Thm: If language A is regular, and f is a homomorphism, then f(A) is regular

Proof: By induction on R, the regular expression for A

Inductive Case #1: $R = R_1 \cup R_2$ where R_1 , R_2 describe "smaller" reg langs A_1 , A_2

IH (assume the theorem is true for "smaller" languages)

- If language A_1 is regular, then $f(A_1)$ is regular
- If language A_2 is regular, then $f(A_2)$ is regular

<u>Goal</u>: If language $A_1 \cup A_2$ is regular, then $f(A_1 \cup A_2)$ is regular

Proof of Goal (piece together known definitions and statements!)

- $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ (because f and U don't affect each other)
- $f(A_1)$ is regular (because of IH)
- $f(A_2)$ is regular (because of IH)
- $f(A_1) \cup f(A_2)$ is regular (because union is closed for regular languages)

In-Class quiz 2/9

See gradescope