UMB CS 420

Non-Regular Languages
Monday, February 14, 2022

Turing-recognizable

decidable

context-free

.’ o
regular @ ® ®

Arnoancements
« HW 2 due yesterday

« HW 3 released, due Sun 2/20 11:59pm EST

 No class next Monday Feb 2/21

A language is a set of strings.

$ fa: Regular or Not?

* Many ways to prove that a language IS regu @r:) ecomnizes anguage 4
» Construct a DFA or NFA (or GNFA) recognizing it T AT

« Come up with a regular expression describing the language
« Regular Expression < NFA < DFA < Regular Language

» But not all languages are regular!
« Most programming lang syntaxes, e.g., HTML / XML, are not regular

« That means they can’t be represented with a regular expression
(a common mistake)!

IF YOURE HAVIN' PERL T Gor 99 SO T usED Now T HAVE
PROBLEMS T FEEL PROBLEMS, REGOLAR 100 PROBLEMS.
BAD FOR YOU, SON—) EXPRESSIONS, }

sl

Someone Who Did Not T

HTML is a language of sufficient complexity that it cannot be parsed by regular
expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every
time you attempt to parse HTML with regular expressions, the unholy child weeps
the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with
regex summons tainted souls into the realm of the living. HTML and regex go

| Reg EX matCh Open tagj except XH TM L Self'contogether like love, marriage, and ritual infanticide. The <center> cannot hold it is too

Asked 10 years, 10 months ago Active 1 month ag Viewed 2.9m times

| need to match all of these opening tags:

Trying to use regular expressions to

1993 4 recognize non-regular HTML language

But not these:

| You can't parse [X]JHTML with regex. Because HTML can't be parse«

Regex is not a tool that can be used to correctly parse HTML. As | h

4414 HTML-and-regex questions here so many times before, the use of re
allow you to consume HTML. Regular expressions are a tool that is
sophisticated to understand the constructs employed by HTMLJHTN

| regular language and hence cannot be parsed by regular expressior
queries are not equipped to break down HTML into its meaningful pe

times but it is not getting to me. Even enhanced irregular regular eXI 2ALG0 14 1$:TONy THE

used by Perl are not up to the task of parsing HTML. You will never

late. The force of regex and HTML together in the same conceptual space will
destroy your mind like so much watery putty. If you parse HTML with regex you are
giving in to Them and their blasphemous ways which doom us all to inhuman toil for
the One whose Name cannot be expressed in the Basic Multilingual Plane, he
comes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
your psyche withering in the onslaught of horror. Regex based HTML parsers are
the cancer that is Killing annot be saved
the trangession of a child

of dread torture and security holes using regex as e
establishes a breach between this world and the dread realm of corrupt entities (like
SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for
HTML will instantly transport a programmer’'s consciousness into a world of
ceaseless screaming, he comesthe-pestilentslithy regex-infection will devour your
HTML parser, application and existence for all time like Visual Basic only worse he
comes he comes do not fight he comgs, his unholy radiaricé destroying all
en,";ghtenment HTML tags leaking from Jyour eyes/’hke liquid pain, the song of
regular expres&en—pamng—wnl extinguish the voices of mortal man from the sphere
I can see it can you see_jt n‘ it is beautiful the f inal snuf fing of the lies of Man ALL IS
LOSTALL IS LOST the pony he comes he comes-hecomes thé,‘ichor permea,te§

all IE*‘IY FACE MY FACE oh god—r{p WOMOOO NO stop the an-_g!‘ S ir‘e not real

&
A

PONYHE "‘E§

IHave you tried using an XML parser instead? I

thstback: DesigNIing DFAS or NFAS oy

* Each state “stores” some information @-.

* E.8, Qo= S€en even # of 15", q.44 = “seen odd # of 1s”.
e Finite states = finite amount of info (must decide in advance)

* This means DFAs can't keep track of an arbitrary count!
« would require infinite states

A Non-Regular Language

L={0"1"|n=0)}

A DFA recognizing L would require infinite states! (impossible)
 States representing zero 0s, one 0, two 0s, ...

* This language represents the essence of many PLs, e.g., HTML!
« To better see this replace:
° HO" Wlth “<tag>“ Or ll(“
* “1"with “</tag>" or)" Still, how do we

: : prove non-regularness?
* The problem Is tracking the nestedness

« Regular languages cannot count arbitrary nesting depths
« Eg,if { if { if { ..} } }
« So most programming language syntax is not regular!

A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. ly| >0, and Specifically, all regular languages
3. |zy| < p. satisfy these 3 conditions!

This lemma describes a property
that all regular languages have.

Note: this lemma cannot be used to prove

that a language is a regular language!
(but we already know how to do that anyways)

A Lemma About Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satistying the tollowing conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and All regular languages satisfy
3. |zy| < p. these three conditions!

Specifically, these conditions
apply to strings in the
language longer than length p

Lemma doesn't tell you an exact p!
(just that there must exist “some” p)

Conclusion: pumping
lemma is only interesting
for infinite langs!

The Pumping Lemma: Finite Lan{ (comaining strings witr

repeatable parts)

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z €_A, Lemma doesnttell | | what could p be? How about:

us what p is! Just that| | | ength of longest string + 1

2. |y| > 0, and QU EE, # strings in the language

3. |zy| <p with at least length p? None!
So finite langs (specifically, all strings
in the language “of length at least p”)

must satisfy these conditions

Therefore, all strings with
length at least p satisfy the
pumping lemma conditions! ©

Example: a finite language {“ab”, “cd”}

« All finite langs are regular (can easily construct DFA/NFA recognizing them)

The Pumping Lemma, a Closer Look

\

Pumping lemma If A is a regular lang SO nber p (the
pumping length) where if s is any string in| /(&) -~ pn s may be
divided into three pieces, s = zyz, satistyin| ,i [/~ | | s:

1. for each i > 0, ay'z € A, X <) - y

2. |y| > 0, and strings of length p = “long enough”:

3. |zy| < p. should have a repeatable (“pumpable”) part;

where “pumped” string is still in the language

Strings that have a repeatable part can be split into:
e x=the part before any repeating This makes sense because DFAs have a finite
. “ " number of states, so for “long enough” (i.e,
Y= the repeated (OI’ pumpaple) part some length p) inputs, some state must repeat
« z=the part after any repeating

e.g, “long enough length” = p = # states +1
(The Pigeonhole Principle)

The Pigeonhole Principle

If # birds > # holes,
then there must be > 1
bird in some hole

The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. foreachi > 0, 2y*z € A,

- A
2. y| > 0, and So if possible to repeat once, y,
3. |lrul < . then repeating any number of
y‘ =P times Is also possible ':j‘*~~.,
_ Also, this is the only way T ‘ :
In essence, the pumping for regular languages to
lemma is a theorem about the repeat (Kleene star) N Y,
structure of repeatable
patterns in regular languages “long enough length” = p = # states +1

(some state must repeat)

The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and “sumpable” part of string

3. |zy| < p. > Note: “pumpable” part cannot be empty

Example: infinite language {“00”,“010”,“0110”,“01110”" ...}

« Language is regular bc it's described by the regular expression 01*0
» Notice that the middle part is “pumpable™
« E.g, “010” in the language can be split into three parts: x=0,y=1,z=0

« Pumping (repeating) the middle part creates a string that is still in the language
« E.g, repeat once (i=1): “010” repeat twice (i = 2): “0110”, repeat three times (i = 3): “01110”

Summary: The Pumping Lemma ...

. ... states properties that are true for all regular languages
. ... specifically, properties about repetition in_regular languages

IMPORTANT:
« The Pumping Lemma cannot prove that a language is regular!

« But ... we can use it to prove that a language is not regular

Equivalence of Conditional Statements

* Yes or No? “If Xthen Y” Is equivalent to:

e “If Ythen X" (converse)
e NO!

e “If not X then not Y” (inverse)
e NO!

* “If not Y then not X" (contrapositive)
e Yes!

Pumping Lemma: Proving Non-Regularity

f-then statement ... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. |zy| <p. | _
Equivalent (contrapositive):
If any of these are not true ...

This Is the essence of
“proof by contradiction”

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"

Kinds of Mathematical Proof

 Proof by construction
 Construct the object in question

 Proof by induction
« Use to prove properties of recursive definitions or functions

* Proof by contradiction (===

* Proving the contrapositive

253

How To Do Proof By Contradiction

3 easy steps:
1. Assume the opposite of the statement to prove

2. Show that the assumption leads to a contradiction

3. Conclude that the original statement must be true

Pumping Lemma: Non-Regularity Example

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B 1s not regular. The proof is by contradiction.

Pumping lemma - If A is a regular language, then there is a number p (the

Wa nt tO D rove: On 111 iS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says all

Proof (by contrad iction): Now we must find a contradiction ... siings 7 = [engil e eplilite

into xyz where y is pumpable

° Assume: Onln is a regUIar language So find string > length p that is not

S satisfy the pumping lemma splittable into xyz where y is pumpable
* |.e, all strings length p or longer are puinipable

« Counterexample = 0r1?

... then not true Pumping lemma - If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
Contrapositive: If not true ...

2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says all

strings 071" > length p are splittable
into xyz where y is pumpable

Possible Split: y = all 0s
So find string > length p that is not
splittable into xyz where y is pumpable
BUT ... pumping

Want to prove: 071" is not a regular language

lemma requires

p 1s
only one pumpable
splitting

Proof (by contradiction):

e Assume: 0"1" is a regular language
So it must satisfy the pumping lemma
.e., all strings length p or longer are pumpable p 0s

00..011..1
\ ’ So the proof is not

done!

« Counterexample = 0r1?

* Choose xyz split so y contains:
e all 0s |
X Yy Z
. . . Is there another way
* Pumping y: produces a string with more 0s than 1s to split into xyz ?
 This means that 0717is not pumpable (according to pumping lemma)

« Which is not in the language 071"
Which means that that 071" is a not regular language (contrapositive)

* This is a contradiction of the assumption!

Want to prove: 071" is not a regular language

Possible Split: y = all 1s

Proof (by contradiction):
« Assume: 0"1" is a regular language

« So it must satisfy the pumping lemma
« |.e, all strings length p or longer are pumpable p 0s p 1s

« Counterexample = 0r1?
00..011...1

« Choose xyz split so y contains:
e all 1s |
X y Z
. . Is there another way
* |s this string pumpable? to split into xyz ?
* No!

« By the same reasoning as in the previous slide

Want to prove: 071" is not a regular language

Possible Split: y= 0s and 1s

Proof (by contradiction):
« Assume: 0"1" is a regular language

« So it must satisfy the pumping lemma
« |.e, all strings length p or longer are pumpable p 0s p 1s

« Counterexample = 0r1°
) . O O O 1 1 1 Did we examine
» Choose xyz split so y contains: e [every possible

* both Os and 1s | splitting?

X Y Z Yes! QED

e |s this string pumpable?
* No!
* Pumped string will have equal 0s and 1s

But maybe we
did’t have to ...

 But they will be in the wrong order: so there is still a contradiction!

The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. lzy| < p. p0s

The repeating party ... \OO (),11 1

must be in the first p characters! Y

y must be in here!

The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, 2y'z € A,

2. |y| > 0, and

3. |zy| < p.

Repeating part y must be non-empty ...
but can be repeated zero times!

Example: L = {01 |i>]}

Pumping Down

Want to prove: L = {0V | i >} is not a regular language

Proof (by contradiction):

« Assume: L is a regular language
So it must satisfy the pumping lemma
l.e., all strings length p or longer are pumpable p+1 0s p 1s

* Choose xyz split so y contains:
 all 0s
« (Only possibility, by condition 3)
Xy
* Repeat y zero times (pump down): produces string with 0s < 1s

« Counterexample = 0r*11»

C .

Z

« Which is not in the language {01/ | i >}
« This means that {01/ | i >} does not satisfy the pumping lemma
« Which means that that itis a not regular language
 This is a contradiction of the assumption!

Newt 7ine /a/(c/ rest af the Semester /

« If a language is not regular, then what is it?

* There are many more classes of languages!

Turing-recognizable

decidable

context-free

Check-in Quiz 2/14

On gradescope

