Turing Machines (TMs)

Wednesday, March 2, 2022

Announcements

• HW 5 due Sun 3/6 11:59pm

• Reminder: "type check" your work!

• Example: $\delta: Q \times \Sigma_{\mathcal{E}} \longrightarrow \mathcal{P}(Q)$ 1st arg must be a state (from set Q)

2nd arg must be a char, or ϵ Output must be set of states!

CS 420 So Far, and Looking Forward

Turing Machines (TMs)

- Infinite tape (memory), arbitrary read/write
- Expresses any "computation"
- PDAs: recognize context-free languages
- $A \rightarrow 0A1$ Infinite stack (memory), push/pop only
- $A \rightarrow B$ Can't express: <u>arbitrary</u> dependency,
 - e.g., $\{ww|\ w\in\{ exttt{0,1}\}^*\}$
 - DFAs / NFAs: recognize regular langs
 - Finite states (memory)
 - Can't express: dependency e.g., $\{0^n \mathbf{1}^n | n \ge 0\}$

Alan Turing

- First to formalize the models of computation we're studying
 - I.e., he invented this course

Worked as codebreaker during WW2

- Also studied Artificial Intelligence
 - The Turing Test

Finite Automata vs Turing Machines

- Turing Machines can read <u>and write</u> to <u>arbitrary</u> "tape" cells
 - Tape initially contains input string
- The tape is infinite

- Each step: "head" can move left or right
- A Turing Machine can accept/reject at any time

Call a language *Turing-recognizable* if some Turing machine recognizes it.

This is an **informal TM description**One "step" =
multiple formal transitions

<u>Let:</u> M_1 accepts inputs in language $B = \{w\#w|\ w \in \{\mathtt{0,1}\}^*\}$

tape

 M_1 = "On input string w:

head

0 1 1 0 0 0 # 0 1 1 0 0 0 u ...

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject.

Cross off symbols as they are checked to keep track of which symbols correspond.

"Cross off" = write "x" char

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

"Cross off" = write "x" char

```
"Cross off" = write "x" char
```

```
0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

"Cross off" = write "x" char

```
      0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
```

```
"Cross off" = write "x" char
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

```
M_1 = "On input string w:
```

"zag" to start

```
      0
      1
      1
      0
      0
      0
      1
      1
      0
      0
      0
      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

```
"Cross off" = write "x" char
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

Continue crossing off

```
"Cross off" = write "x" char
```

```
      0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...

      x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

```
      0
      1
      1
      0
      0
      0
      1
      1
      0
      0
      0
      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

 M_1 accepts inputs in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Turing Machines: Formal Definition

```
A Turing machine is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where Q, \Sigma, \Gamma are all finite sets and
```

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box
- **3.** Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \mathcal{C}$ read le sta write to move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

$$B = \{w \# w | w \in \{0,1\}^*\}$$

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in \text{read} \ \ \text{es} \ \ \text{write} \ \ \ \text{move}$
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read} \triangleright s$ write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read}$ es write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

 $B = \{ w \# w | w \in \{0,1\}^* \}$

Formal Turing Machine Example

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in \text{read} \ \ \text{es} \ \ \text{write} \ \ \ \text{move}$
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

$$B = \{ w \# w | w \in \{0,1\}^* \}$$

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \text{read} \text{ e s}$ write move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Turing Machine: Informal Description

• M_1 accepts if input is in language $B = \{w\#w|\ w \in \{0,1\}^*\}$

M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not if no # is found, reject. Cross off symbols as they symbols correspond. We will (mostly) track of which stick to informal descriptions of
- 2. When all symbols to Turing machines, n crossed off, check for any remaining like this one at of the #. If any symbols remain, reject; otherwise, cept."

TM Informal Description: Caveats

- TM informal descriptions are not a "do whatever" card
 - They must still represent the formal tuple
- Input must be a string, written with chars from finite alphabet
- An informal "step" represents a finite # of formal transitions
 - It cannot run forever
 - E.g., can't say "try all numbers" as a "step"

Non-halting Turing Machines (TMs)

- A DFA, NFA, or PDA always halts
 - Because the (finite) input is always read exactly once
- But a Turing Machine can <u>run forever</u>
 - E.g., the head can move back and forth in a loop
- Thus, there are two classes of Turing Machines:
 - A recognizer is a Turing Machine that may run forever (all possible TMs)
 - A decider is a Turing Machine that always halts.

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.

Formal Definition of an "Algorithm"

• An <u>algorithm</u> is equivalent to a Turing-decidable Language

Turing Machine Variations

1. Multi-tape TMs

2. Non-deterministic TMs

We will prove that these TM variations are **equivalent to** deterministic, single-tape machines

Reminder: Equivalence of Machines

• Two machines are equivalent when ...

• ... they recognize the same language

<u>Theorem</u>: Single-tape TM ⇔ Multi-tape TM

- ⇒ If a single-tape TM recognizes a language, then a multi-tape TM recognizes the language
 - A single-tape TM is equivalent to ...
 - ... a multi-tape TM that only uses one of its tapes
 - DONE!
- ← If a multi-tape TM recognizes a language,
 then a single-tape TM recognizes the language
 - Convert multi-tape TM to single-tape TM

Multi-tape TM → Single-tape TM

<u>Idea</u>: Use delimiter (#) on single-tape to simulate multiple <u>tapes</u>

• Add "dotted" version of every char to simulate multiple heads

<u>Theorem</u>: Single-tape TM ⇔ Multi-tape TM

- ✓ ⇒ If a single-tape TM recognizes a language, then a multi-tape TM recognizes the language
 - A single-tape TM is equivalent to ...
 - ... a multi-tape TM that only uses one of its tapes
- ✓ ← If a multi-tape TM recognizes a language, then a single-tape TM recognizes the language
 - Convert multi-tape TM to single-tape TM

Non-Deterministic Turing Machines?

Flashback: DFAS VS NFAS

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

VS

Nondeterministic transition produces set of possible next states

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Remember: Turing Machine Formal Definition

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Nondeterministic Nondeterministic Nondeterministic Turing Machine Formal Definition

```
A Nondeterministic is a 7-tuple, (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), where Q, \Sigma, \Gamma are all finite sets and
```

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,

4.
$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$$
 $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Thm: Deterministic TM ⇔ Non-det. TM

- ⇒ If a deterministic TM recognizes a language, then a nondeterministic TM recognizes the language
 - To convert Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM δ fn output to a one-element set
 - (just like conversion of DFA to NFA)
 - DONE!
- ← If a nondeterministic TM recognizes a language, then a deterministic TM recognizes the language
 - To convert Non-deterministic TM → Deterministic TM ...
 - ???

Review: Nondeterminism

Deterministic Nondeterministic computation computation • start In nondeterministic computation, every step can branch into a set of states reject What is a "state" for a TM? accept or reject

Flashback: PDA Configurations (IDS)

• A configuration (or ID) is a snapshot of a PDA's computation

• A configuration (or **ID**) (q, w, γ) has three components: q = the current state w = the remaining input string γ = the stack contents

TM Configuration (ID) = ???

- 1. Q is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

TM Configuration = State + Head + Tape

TM Configuration = State + Head + Tape

TM Computation, Formally

Single-step head confige (Right)
$$\alpha q_1 \mathbf{a}\beta \vdash \alpha \mathbf{x} q_2\beta$$
 if $q_1, q_2 \in Q$ write $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{R})$ read $\mathbf{a}, \mathbf{x} \in \Gamma$ $\alpha, \beta \in \Gamma^*$ (Left) $\alpha bq_1 \mathbf{a}\beta \vdash \alpha q_2 b\mathbf{x}\beta$ if $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Extended

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

Edge cases:
$$q_1\mathbf{a}\beta \vdash q_2\mathbf{x}\beta$$
 if $\delta(q_1, \mathbf{a}) = (q_2, \mathbf{x}, \mathbf{L})$

 $\alpha q_1 \vdash \alpha \Box q_2$

if
$$\delta(q_1, \underline{\ }) = (q_2, \underline{\ }, R)$$

Nondeterminism in TMs

1st way

- Simulate NTM with Det. TM:
 - Det. TM keeps multiple configs single tape
 - Like how single-tape TM simulates multi-tape
 - Then run all configs, in parallel
 - I.e., 1 step on one config, 1 step on the next, ...
 - Accept if any accepting config is found
 - Important:
 - Why must we step configs in parallel?

Interlude: Running TMs inside other TMs

Exercise:

• Given TMs M_1 and M_2 , create TM M that accepts if either M_1 or M_2 accept

Possible solution #1:

- M = on input x,
 - Run M_1 on x, accept if M_1 accepts
 - Run M_2 on x, accept if M_2 accepts

M_1	M_2	M	
reject	accept	accept	
accept	reject	accept	V

Note: This solution would be ok if we knew M_1 and M_2 were deciders (which halt on all inputs)

Interlude: Running TMs inside other TMs

Exercise:

• Given TMs M_1 and M_2 , create TM M that accepts if either M_1 or M_2 accept

Possible solution #1:

- M = on input x,
 - Run M_1 on x, accept if M_1 accepts
 - Run M_2 on x, accept if M_2 accepts

Possible solution #2:

- M = on input x,
 - Run M_1 and M_2 on x in parallel, i.e.,
 - Run M_1 on x for 1 step, accept if M_1 accepts
 - Run M_2 on x for 1 step, accept if M_2 accepts
 - Repeat

M_1	M_2	M
reject	accept	accept
accept	reject	accept 🗸
accept	loops	accept
loops	accept	loops

M_1	M_2	M	
reject	accept	accept	
accept	reject	accept	<u> </u>
accept	loops	accept	
loops	accept	accept	V

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - · 1-2

2nd way (Sipser)

- Simulate NTM with Det. TM:
 - Number the nodes at each step
 - Deterministically check every tree path, in breadth-first order
 - 1
 - 1-1
 - 1-2
 - 1-1-1

2nd way (Sipser)

- - To convert Deterministic TM → Non-deterministic TM ...
 - ... change Deterministic TM δ fn output to a one-element set
 - (just like conversion of DFA to NFA)
- <= If a nondeterministic TM recognizes a language, then a deterministic TM recognizes the language
 - Convert Nondeterministic TM → Deterministic TM

Conclusion: These are All Equivalent TMs!

Single-tape Turing Machine

Multi-tape Turing Machine

Non-deterministic Turing Machine

Check-in Quiz 3/2

On gradescope