UMB CS420

Nondeterministic TMs
Monday, March 7, 2022

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,.. THE RUNNING TIME 1S O(P¥*n)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..,

WTF, MAN, I JUsST
WANTED TO LEARN
HOW TO PROGRAM

VIDEC GAMES,




Arnouncements
e HW 5 in

« HW 6 out
« Due Sun 3/20 11:59pm EST (2 weeks)

e Reminder: No class next week (Spring Break)



last Tine: TUTING Machines

« Turing Machines can read and write to arbitrary “tape” cells
« Tape Initially contains input string

States .
l input | | Empty tape locations

* The tape Is infinite
» (to the right) head b b _é .

(0 I I

« On a transition, “head” can move left or right 1 step

Call a language Turing-recognizable it some Turing machine
recognizes 1t.



Turing Machine: Informal Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Ao=e oot s found, reject.
Cross off symbols as thes’ We will (mostly) \n track of which

bol d. stick to informal
TR TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining &  like this one At of the #. If any
symbols remain, reject; otherwise;—.ccept.”



Turing Machines: Formal Definition

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol o
. I is the tape alphabet, where u = T'and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

. go € €29 s¢lWrite | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept-



Non-Deterministic Turing Machines?



Flashback: DEFAS VS NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet, -
Nondeterministic

3. 5: Q X Z—>Q iS the Wﬂnsz.tionﬁln(:tion, transition produces set of
4. qo € Q is the start state, and possible next states
5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.



Femember: TUNINE Machine Formal Definition

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-



Non

term : . Co. .
Qe TUTiNG Machine Formal Definition

inistic

Nondeterministic

A Turing Machine is a 7'mplea (Q: E: Il 5: d0s Qaccepts qreject)a where

(2, X, I are all finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the blank symbol L,
3. T is the tape alphabet, where u € "'and ¥ C T,

4. 5 QO xT=—Q< >R}
5. qo € @ 1s the start state,
6. Qaccepr € @ 1s the accept state, and

0: Q@ xI'—P(Q x T x {L,R})

7. Qreject € @ 1s the reject state, where greject 7 Gaccept-




Thm: Deterministic TM < Non-det. TM

= If a deterministic TM recognizes a language,
then a non-deterministic TM recognizes the language
« To convert Deterministic TM = Non-deterministic TM ...

e ... change Deterministic TM 6 fn output to a one-element set
e (just like conversion of DFA to NFA --- HW 2, Problem 3)

* DONE!

& If a non-deterministic TM recognizes a language,
then a deterministic TM recognizes the language

e To convert Non-deterministic TM - Deterministic TM ...
° P?7?7?
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Lwiew: NONdeterminism

Deterministic Nondeterministic
computation computation

o start .
Q star ( N
({,\: 'T In nondeterministic

:

computation, every

L. : ( 1 step can branch into a
Q Y set of “states”
g reject ( 1

: : What is a “state”

.. '\ fora TM?
(

- accept or reject §: Q X F—)P(Q X ' % {L,}.R})




tastick PDA Configurations (IDs)

- A configuration (or ID) is a snapshot of a PDA’s computation

- A configuration (or ID) (g, w, y) has three components:
g =the current state
w = the remaining input string
vy = the stack contents



TM Configuration (ID) = 7?7

3) read/write head

1) states

control

—

b

a

b

L

2) Tape contents

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-



TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
=
SN
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... Conﬁgafterzsteps
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept



TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)



TM Computation, Formally

M = (Q, E; F; 57 q05 Qaccept QTejGCt)

Next
Single-step "¢ config Extended
(Right) aqiaB F axgsf * Base Case
i 010 € O write IF Ifor any 1D [

(5((]1,&) — (q2=X7R)
axel apel”

read « Recursive Case
(Left) abqraf = agabxs I ¥ Jif there exists some ID K
if 3(q1,a) = (g2, %, L) such that I - K and K F J
Edge cases: giaB b .goxfB  itsaa) = (@xL)
Head stays at leftmost cell (L move, when already at leftmost cell)

aqi F acgy i@ )= (@R . |
Add blank symbol to config (R move, when at rightmost filled cell)



Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

® 1011¢;01111

For TMs, each J
node is a reject o )'
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k



Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: ST bl
* Det. TM keeps multiple configs single tape (\

* Like how single-tape TM simulates multi-tape
R

* Then run all computations, in parallel
 |.e, 1step on one config, 1 step on the next, ...

1011¢701111 #1011¢701111

{

reject o l’

« Accept If any accepting config is found

* Important: Deterministic TM |
' .. keeps all configs *
« Why must we step configs in parallel? at each step on 1



Interlude: Running TMs inside other TMs

“loop” means input
string not accepted

Exercise:
« Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1: .
. reject accept accept
* M=on mPUt Xy . accept reject accept
* Run M, on x, accept if M, accepts
« Run M, on x, accept if M, accepts x

Note: This solution would be ok if
we knew M, and M, were deciders
(which halt on all inputs)



Interlude: Running TMs inside other TMs

Exercise:

« Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1:

« M =o0n input x,
« Run M, on x, accept if M, accepts
* Run M, on x, accept if M, accepts

Possible solution #2;

* M=o0ninputx,
« Run M, and M, on x in parallel, i.e.,
« Run M, on x for 1 step, accept if M, accepts
« Run M, on x for 1 step, accept if M, accepts
« Repeat

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
loops

M MM

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
accept

V]

V]
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Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
« Deterministically check every tree path, f l
in breadth-first order / j\
* 1] 2

s . \v
e ( 3

accept



Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic

« Simulate NTM with Det. TM: computation

 Number the nodes at each step 1
« Deterministically check every tree path, f \.

in breadth-first order v/;\v 2

° 1 T~ T
1 2 3 4

g )
reject '/ \'

accept



Nondeterministic TM = Deterministic

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
« Deterministically check every tree path, f l
in breadth-first order v/1 A N
* 118]3] |4

b e
. 1-1-1 (\’

reject o

2"d way
(Sipser)

* accept



Nondeterministic TM = Deterministic |2 way

(Sipser)
Always has input, Needs 3 tapes
never changes
Y
0|/0[1]|0|u| ... Inputtape
Used to run each path (re-copy
D v input here when checking a path)
x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g, 1-1-2, etc.

1(2(3|3(2|3|1(2|1]|1|3|u|... addresstape




Nondeterministic TM <& Deterministic TM

=> If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
« To convert Deterministic TM = Non-deterministic TM ...

« ... change Deterministic TM 6 fn output to a one-element set
e (just like conversion of DFA to NFA)

<= If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert Nondeterministic TM = Deterministic TM m



Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine



Turing Machines and Algorithms

« Turing Machines can express any “computation”
* |.e,, a Turing Machine models (Python, Java) programs!

Remember:
TMs = programs

« 2 classes of Turing Machines

« Recognizers may loop forever
vext |o Deciders always halt

ALGORITHMS

» Deciders = Algorithms . S
« l.e, an algorithm is any program that always halts “'“" \‘



Flashback HW 1. Problem 1

1 DFA Formal Description

S c c
a 3 3
C

1. Come up with a formal description for this DFA.

Recall that a DFA’s formal description has five components, e.g.

. M=(Q,X,06 .
This represents (@, %0, F)

com p Utatio n by a DFA You may assume that the alphabet contains only the symbols from the diagram.

You had to “do” (meta)

computations (e.g., on
2. Thét do the following computations 1sing extended transition function and say .
whether computation represents an accepting computation (some of these may be p a p e r’ N yO ur h ea d )' tO

tricky so be careful here, you may want to review the definition of an accepting

computation): “dO" thiS Computation!

a. 8(q0,¢)
b. §(g0, a)



0: Q X ¥—>Q is the transition function

thastback: DFA Computations

Define the extended transition function: §: Q x &* — Q

Base case: (g, ¢) = ¢

First char Last chars

Remember:
TMs = programs

Recursive case: (g, a1Wyest) = 0(8(q, a1), Wrest)

Single transition step

A function: DFAaccepts(B,w)

Calculating this computation returns TRUE if DFA B accepts string w

requires (meta) computation!

.
- Define “current” state g, ... = Start state q,
Could you implement this : For_eathe:c?npeu; Chazr(?{;' .
(meta) computation as an algorithm? L Setguomg
- Return TRUE if q e IS @N accept state




The language of DFAaccepts

Function DFAaccepts(B,w)
returns TRUE if DFA B accepts string w

Apea = {(B,w)| B 1s a DFA that accepts input string w }

But a language is a set of strings?



Interlude: Encoding Things into Strings

« ATuring machine’s input Is always a string

« So anything we want to give to TM must be encoded as string

Notation: <SOMETHING> = string encoding for SOMETHING
« A tuple combines multiple encodings, e.8., <B, W> (iom prevside)

Example: Possible string encoding for a DFA?

55

(Q? Z 65 qo. F)

(written as string)

nnnnnnnnnnnn




Interlude: Informal TMs and Encodings

An informal TM description:
1. Doesn’t need to describe exactly how input string is encoded

2. Assumes input is a “valid” encoding
 Invalid encodings are automatically rejected



The language of DFAaccepts

Apea = {(B,w)| B is a DFA that accepts input string w }

Turing-recognizable

 DFAaccepts is a Turing machine

 But is it a decider or recognizer?
e |.e, is it an algorithm?

« To show it's an algo, need to prove:

decidable

® o o
context-free

Apra 1s a decidable language



How to prove that a language I1s decidable?

 Create a Turing machine that decides that language!

Remember:

* A decider is Turing Machine that always halts
« |.e, for any input, it either accepts or rejects It.
* It must never go into an infinite loop




How to Design Deciders

 If TMs = Programs ...
... then Creating a TM = Programming

« £.g, If HW asks “Show that lang L is decidable” ...

* .. you must create a TM that decides L; to do this ...
» ... think of how to write a (halting) program that does what you want



Next Tire: Apga 1s a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }
Decider for Apga :



Check-in Quiz 3/7

On gradescope



