CS420

Reducibility

Monday, March 28, 2022

DEFINE DOES ITHALT (PROGRAM):

{
3

RETURN TRUE;

THE BIG PICTURE SOLUTION
To THE HALTING PROBLEM

%/{/{0«/{0@#{@/{&?

e HW 7 In
»+Due-Sun-3{271%:59%pm

« HW 8 out
* Due Sun 4/3 11:59pm

last Tine: Undecidability Proofs

« We proved Arw = {(M,w)| M isaTMand M accepts w} undecidable ...

e ... by contradiction:

« Use hypothetical A;, decider to create an impossible decider “D”!

 Step # 1: coming up with “D"” --- hard!
« Need to invent diagonalization

(My) (My) (M) (My --- (D)
My | accept reject pl reject accept
M, | accept accept pt accept ~accept
Ms | reject reject ject reject reject
My | accept accept reject reject accept

D

reject reject accept

 Step # 2: “reduce” A, to the “D” problem --- easier!

« From now on: undecidability proofs only need to do step # 2!

« And we now have two “impossible” problems to choose from

last Tire: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable
Proof, by contradiction:

« Assume: HALT;,, has decider R; use it to create decider for Ay
ATM = {(M , w)| M isa TM and M accepts w } THE HALTING PROBLEM IS EASY TO SOLVE.

IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS, T

o contradiction

 But A, Is undecidable and has no decider!

last Tire: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

PFOO]C, by contradiction: Using our hypothetical HALT;, decider R

« Assume: HALT;, has decider R; use It to create decider for A}y,
Arm = {{(M,w)| M is'a TM and M accepts w}

S = “On input (M, w),an encoding of a TM M and a string w:
1. Run TM R on input (M, w).

If R rejects, reject. This means M loops on input w

2.
3. If R accepts, simulate M on w until it halts.<{ This step always halts
4. If M has accepted, accept; it M has rejected, reject.”

Termination argument:

Step 1: Ris a decider so always halts
Step 3: M always halts because R said so

Undecidability Proof Technique #1:

Zd&’b‘ 7/—/116 The Haltlﬂg PrOblem Reduce from Ay,

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction:

« Assume: HALT;,, has decider R; use it to create decider for Ay
Arm = {{(M,w)| M is a TM and M accepts w}

input (M, w), an encoding of a TM M and a string w:
1. Run input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until3
4. If M has accepted, accept; if M has rej ected reject:

* But A, Is undecidable! I.e,, this decider does not exist!
« SO HALT, 1s also undecidable!

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
e Acec = {{(G,w)| G is a CFG that generates string w} Decidable
e Arm = {{M,w)| M isa TM and M accepts w} Undecidable
« HALTT\ = {(M,w)| M is a TM and M halts on input w} Undecidable
e Epra = {(A)| AisaDFAand L(A) = (0} Decidable
e Ecrg = {(G)| Gis a CFG and L(G) = (i} Decidable

today |« Py = {(M)| M isa TM and L(M) = ()} Undecidable

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Thm: Eqy, 1S undecidable
Proof, by contradiction:

« Assume E;y, has decider R; use 1t to create decider for Ay
S =“On inoyt (M, w), an encoding of a TM M and a string w:

First, construct M,

. Run K on mput (My
. If R accepts, reject (because it means (M) doesn't accept

\

accept

- if R rejects, then

e Idea: Wrap (M) in a new TM that can only accept w:

ETM — {<M>‘ M is a TM and L(M)

0}

Note: M, is only used as arg to R; we never run it!

W

((M) accepts

w

)

A —d

M; = “On input x:

1. Ifz # w, reject.

Input not w, always reject

Input is w, maybe accept 2. If z = w, run M on input w and accept if M does.”

M, accepts w if M does

——d

Reducibility: Moditying the TM

Frm = {{(M)| M isaTMand L(M) =
Thm: E;y, IS undecidable ma = {{M)] Misa TMand L(M) =0}

Proof, by contradiction: This decider for 4, cannot exist!
« Assume E;, has decider R; use 1t to create decider for Ay

S =*“Oainnut (M, w), an encoding of a TM M and a string w:

First, construct M,

. Kun ¥ on nput (

. If R accepts, reject (because it means taccept [w
- if R rejects, then[accepd ((M) accepts w —

e Idea: Wrap (M) in a new TM that can only accept w:
M; = “On input z:
1. If x # w, reject.

2. Ifz = w, run M on input w and accept it M does.”

next

Sumary: The LImits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

needs

Erm = {(M)| MisaTMand L(M) = 0} ¢

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Undecidability Proof Technique #3

Reduce to something else: EQ+y is undecidable

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Proof, by contradiction:

« Assume: EQ;\, has decider R; use It to create decider for Av,:
Erp = {1 MisaTMand L(M) = 0}

S = “On input (M), where M is a TM:
1. Run R'on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

Reduce to something else: EQy is undecidable
EQ+v = {(My, M3)| My and M are TMs and L(M;) = L(Ms)}
Proof, by contradiction:

« Assume: EQ;\ has decider R; use It to create decider for E;y:
={(M)| MisaTMand L(M) = (0}

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

 But E;, Is undecidable!

Sumary: Undecidability Proof Techniques

. ProofTechnique #1- Atm = {{(M,w)| M is a TM and M accepts w }

 Use hypothetical decider to implement impossible A, deciderﬂ Reduce
« Example Proof: HALTtw = {(M,w)| M is a TM and M halts on input w}

* Proof Technique #2:
 Use hypothetical decider to implement impossible Ay, decider
 But first modify the input M

Reduce

» Example Proof: FEry = {(M)| M isaTM and L(M) = 0} °

* Proof Technique #3:
* Use hypothetical decider to implement non-4,, impossible decider

« Example Proof: EQty = {(My, M3)| M, and M, are TMs and L(M;) = L(Ms)}

Sumary: DecCidability and Undecidability

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Also Undecidable ...

next | * REGULAR;y = {<M>| M isaTM and L(M) is a regular language}

Thm: REGULAR~y is undecidable

Undecidability Proof Technique #2:
Modify input TM M

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

Proof, by contradiction:
« Assume: REGULAR-), has decider R; use It to create decider for A;y,:

S

e Run R on mput (M
o It R accepts, accept;\\if R rejects, reject

= “On input (M, w), an encoding of a TM M and a string w:

First, construct M, (??)

2

N

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w

Thm: REGULARTy is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

: Always accept strings 071"
Mg = “On 1nput Ji L(M,) = nonregular, so far

1. If x has the form 01", accept.
2. If x does not have this form, run M on input wjand

accept 1t M accepts w.” | IfMacceptsw,
accept everything else,

if M does not accept w, M, accepts all strings (regular lang) so L(M,) = ¥* = regular

All strings }

o Want: L(M,) = D/
0%l « regular, if M accepts w

« nonregular, if M does not accept w

if M accepts w, M, accepts this non-regular lang

Seems like no algorithm can
. compute anything about
Also Undecidable ... (anguage of TMs
l.e., about programs!
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}

* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

An Algorithm About Program Behavior?

main()

{
printf ("hello, world\n");
+

Write a program that,
given another program as its argument,
returns TRUE if that argument prints
“Hello, World!”

4

TRUE

{

If

Fermat’s Last Theorem
(unknown for ~350 years,
solved in 19905s)

main() Z////

" +y" = z", for any integer n > 2

printf("hello, world\n");

Write a program that,

ther program as its argument,
RUE if that argument prints

‘Hello, World!”

4

Y& X ds

21

Seems like no algorithm can

. compute anything about
Also Undecidable ... Turing Machines
l.e., about programs!
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice’'s Theorem
*|ANYTHING-,, = {<M>| MisaTM and “... anything ...” about L(M)}

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
« Forany M, M,, if L(M,) = L(M,) ...
. ...then M, € ANYTHING,,, © M, € ANYTHING;,

* Also, “... Anything ..."must be “non-trivial”:
« ANYTHING), '={}
* ANYTHING), != set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
« Since ANYTHING-, is non-trivial, then there exists M,,, € ANYTHINGqy,
« Where R accepts M,

 Use R to create decider for Aqy:
On input <M, w>:

These two cases

= i . must be different,
* Create M]_ng{v OI\I:I Tfergic e If M accepts w: M,, = Myyy | (so R can distinguish
S At () 1 , If M doesn’t accept w: M,, accepts nothing || when M accepts w)
- If M rejects w: reject x -
- If M accepts w: Wait! What if the TM that accepts

Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

« If it accepts, then M, = M,,,, SO M accepts w, so accept Proof still works! Just use the

e Else reject complement of ANYTHING;,, instead!
|

Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

Apea = {(B,w)| B is a DFA that accepts input string w} Decidable

Acre = {{(G,w)| G is a CFG that generates string w} Decidable
Atm = {(M,w)| M isa TM and M accepts w} yndecidable

* In hindsight, of course a restricted TM (a decider) shouldn’t be
able to simulate unrestricted TM (a recognizer)

e But could a restricted TM simulate an even more restricted TM?
 Next time

Check-in Quiz 3/28

On gradescope

