CS420 Reducibility

Monday, March 28, 2022

```
DEFINE DOES IT HALT (PROGRAM):
{
RETURN TRUE;
}
```

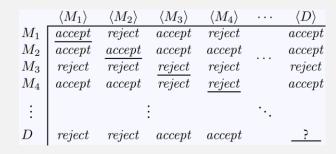
THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

Announcements

- HW 7 in
 - Due Sun 3/27 11:59pm
- HW 8 out
 - Due Sun 4/3 11:59pm

Last Time: Undecidability Proofs

- We proved $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ undecidable ...
- ... by contradiction:
 - Use hypothetical A_{TM} decider to create an impossible decider "D"!
- Step # 1: coming up with "D" --- hard!
 - Need to invent diagonalization



- Step # 2: "reduce" A_{TM} to the "D" problem --- easier!
- From now on: undecidability proofs only need to do step # 2!
 - And we now have two "impossible" problems to choose from

Last Time: The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w \}$

contradiction

Thm: HALT_{TM} is undecidable

Proof, by contradiction:

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• ...

• But A_{TM} is undecidable and has no decider!

Last Time: The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: HALT_{TM} is undecidable

Proof, by contradiction: Using our hypothetical $HALT_{TM}$ decider R

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - **1.** Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject. \leftarrow This means M loops on input w
 - 3. If R accepts, simulate M on w until it halts. This step always halts
 - **4.** If M has accepted, accept; if M has rejected, reject."

Termination argument:

Step 1: *R* is a decider so always halts

Step 3: *M* always halts because *R* said so

Undecidability Proof Technique #1: Reduce from A_{TM}

Last Time: The Halting Problem

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: HALT_{TM} is undecidable

Proof, by contradiction:

• Assume: $HALT_{TM}$ has decider R; use it to create decider for A_{TM} :

```
A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}
```

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run $\mathsf{IM}\,R$ on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- **4.** If M has accepted, accept; if M has rejected, reject."
- But A_{TM} is undecidable! i.e., this decider does not exist!
 - So *HALT*_{TM} is also undecidable!

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$ Decidable
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

today • $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Decidable

Undecidable

Undecidable

Decidable

Decidable

Undecidable

Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by contradiction:

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$ Note: M_1 is only used as arg to R; we never run it!
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept
 - if R rejects, then accept ($\langle M \rangle$ accepts
- Idea: Wrap $\langle M \rangle$ in a new TM that can only accept w:

```
M_1 = "On input x:
```

1. If $x \neq w$, reject. Input not w, always reject

Input is w, maybe accept -2. If x = w, run M on input w and accept if M does."

 M_1 accepts w if M does

Reducibility: Modifying the TM

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable

Proof, by contradiction:

This decider for A_{TM} cannot exist!

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S \equiv \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept
 - if R rejects, then accept $(\langle M \rangle)$ accepts
- Idea: Wrap $\langle M \rangle$ in a new TM that can only accept w:

```
M_1 = "On input x:
       1. If x \neq w, reject.
```

- 2. If x = w, run M on input w and accept if M does."

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

xt • $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Decidable

Undecidable

Decidable

Decidable

needs

Undecidable

Decidable

Undecidable

Undecidable 11

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof, by contradiction:

• Assume: EQ_{TM} has decider R; use it to create decider for A_{TM} :

$$E_{\mathsf{TM}} = \{\langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$$

- S = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof, by contradiction:

• Assume: EQ_{TM} has decider R; use it to create decider for E_{TM} :

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."
- But E_{TM} is undecidable!

Summary: Undecidability Proof Techniques

Proof Technique #1:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• Use hypothetical decider to implement impossible A_{TM} decider

Reduce

- Example Proof: $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- Proof Technique #2:
 - Use hypothetical decider to implement impossible A_{TM} decider
 - But first modify the input M
 - Example Proof: $E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

Reduce

- Proof Technique #3:
 - Use hypothetical decider to implement $\underline{\text{non-}A_{\text{TM}}}$ impossible decider
 - Example Proof: $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Summary: Decidability and Undecidability

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
- $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Decidable

Undecidable

Decidable

Decidable

Undecidable

Decidable

Undecidable

Undecidable 15

Also Undecidable ...

next

• $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Undecidability Proof Technique #2: Modify input TM *M*

Thm: $REGULAR_{TM}$ is undecidable

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

<u>Proof</u>, by contradiction:

- <u>Assume:</u> $REGULAR_{TM}$ has decider R; use it to create decider for A_{TM} :
 - S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - First, construct M_2 (??)
 - Run R on input $\langle M_{2}^{\setminus} \rangle$
 - If R accepts, accept; if R rejects, reject

$\underline{\text{Want}}: L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Thm: REGULAR_{TM} is undecidable (continued)

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

 $M_2 =$ "On input x:

Always accept strings $0^n 1^n$ $L(M_2) = \underline{\text{nonregular}}$, so far

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M on input w and accept if M accepts w."

 If M accepts w,

if *M* does not accept *w*, *M*₂ accepts all strings (regular lang)

If M accepts w, accept everything else, so $L(M_2) = \Sigma^* = \underline{\text{regular}}$

All strings

0ⁿ1ⁿ

 $\underline{\text{Want}}$: $L(M_2) =$

- regular, if M accepts w=
- nonregular, if M does not accept w

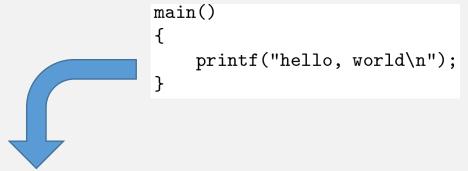
if M accepts w, M_2 accepts this non-regular lang

Also Undecidable ...

Seems like no algorithm can compute **anything** about language of TMs, i.e., about programs!

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > | M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{\mathsf{TM}} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

An Algorithm About Program Behavior?



Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"

Fermat's Last Theorem (unknown for ~350 years, solved in 1990s)

main() { If $x^n + y^n = z^n$, for any integer n > 2 printf("hello, world\n");

Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"

Also Undecidable ...

Seems like no algorithm can compute **anything** about Turing Machines, i.e., **about programs!**

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{\mathsf{TM}} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

• ...

Rice's Theorem

• $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and "... anything ..." about } L(M) \}$

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

- "... Anything ...", more precisely:
 - For any M_1 , M_2 , if $L(M_1) = L(M_2)$...
 - ... then $M_1 \in ANYTHING_{TM} \Leftrightarrow M_2 \in ANYTHING_{TM}$
- Also, "... Anything ..." must be "non-trivial":
 - *ANYTHING*_{TM} != {}
 - *ANYTHING*_{TM}!= set of all TMs

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

complement of $ANYTHING_{TM}$ instead!

Proof by contradiction

• Else reject

- Assume some language satisfying $ANYTHING_{TM}$ has a decider R.
 - Since $ANYTHING_{TM}$ is non-trivial, then there exists $M_{ANY} \in ANYTHING_{TM}$
 - Where R accepts M_{ANY}
- Use R to create decider for A_{TM} :

On input <*M*, *w*>: These two cases must be different, $M_w = \text{on input } x$: • Create M_{w} : If M accepts w: $M_w = M_{ANY}$ (so R can distinguish - Run M on w If M doesn't accept w: M_w accepts nothing when M accepts w) - If *M* rejects *w*: reject *x* Wait! What if the TM that accepts - If *M* accepts *w*: Run M_{ANY} on x and accept if it accepts, else reject nothing is in $ANYTHING_{TM}$! • Run R on M_w • If it accepts, then $M_w = M_{ANY}$, so M accepts w, so accept Proof still works! Just use the

Rice's Theorem Implication

{<*M*> | *M* is a TM that installs malware}

Undecidable! (by Rice's Theorem)

```
unction check(n)
 // check if the number n is a prime
 var factor; // if the checked number is not a prime, this is its first factor
  // try to divide the checked number by all numbers till its square root
  for (c=2; (c <= Math.sqrt(n)); c++)
     if (n%c == 0) // is n divisible by c?
        { factor = c; break}
  return (factor);
   // end of check function
unction communicate()
                         checked number
  var factor; // if the
                         necked number is not
                                               rime, this is its first factor
                         number.value;
                                                t the checked number
 if ((isNaN(i)) || (i <
                         0) || (Math.floor(i = i))
                          iect should be a le positive number")} ;
   { alert ("The checked
  else
    factor = check (i);
    if (factor == 0)
       {alert (i + " is a prime")} ;
                                                           + "X" + i/factor) }
      // end of communicate function
```



```
A_{\mathsf{DFA}} = \{\langle B, w \rangle | \ B \ \text{is a DFA that accepts input string } w \} Decidable A_{\mathsf{CFG}} = \{\langle G, w \rangle | \ G \ \text{is a CFG that generates string } w \} Decidable A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \ \text{is a TM and } M \ \text{accepts } w \} Undecidable
```

- In hindsight, of course a restricted TM (a decider) shouldn't be able to simulate unrestricted TM (a recognizer)
- But could a restricted TM simulate an even more restricted TM?
 - Next time

Check-in Quiz 3/28

On gradescope