UMB (CS420

Context-Sensitive Languages
Wednesday, March 30, 2022

%/{/{0«/{0@%@/{5&’

 HW 8 due 4/3 11:59pm

last Tine: RICE'S Theorem

All languages that look like:

ANYTHINGy, = {<M> | MisaTMand “... anything ...” about L(M)}

... are undecidable!

This means: There's no algorithm
to compute anything about the
language (behavior) of TMs,
l.e., about programs!

P Langs about non-TMs: Decidable
Zd&’f 7/—/’(& Langs about TMs: Undecidable

* Apra = {(B,w)| B is a DFA that accepts input string w} Decidable
e Acec = {(G,w)| G is a CFG that generates string w} Decidable
e Arm = {{M,w)| M isa TM and M accepts w} Undecidable
* FEpra = {(A)| Aisa DFAand L(A) = 0} Decidable
* Ecre = {(G)| Gis a CFG and L(G) = (1} Decidable
* Erm = {(M)| M isaTMand L(M) = 0} Undecidable
* EQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)} Decidable
Lol It breaks the

goingon | FQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)} Undecidable

?
L ara? pattern?

o EQuy = {(My, My)| My and M; are TMs and L(M;) = L(Ma)} Undecidable

Last [ine.

Apea = {(B,w)| B is a DFA that accepts input string w} Decidable

Acre = {(G,w)| G is a CFG that generates string w} Decidable
Atm = {(M,w)| M isa TM and M accepts w} yndecidable

* In hindsight, it makes sense that:

e A restricted TM (a decider) ... Aoz
e ...can’'t simulate an unrestricted TM (a recognizer) pratiaND

A ROMANCE OF
MANY DIMENSIONS

2
igi’/#"'[,

FLATLAND

« But what about:

* A restricted TM (a decider) ...
e ... simulating an even more restricted TM (a ???)

Context-Sensitive Languages

context-sensitive languages (CSL)
- generated by: context-sensitive grammars (CSG)
- recognized by: linear bounded automata (LBA)

Turing-recognizable

context-free

Grammar Languages Automaton

Type-0 Recursively enumerable | Turing machine

regular

Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine
Type-2 Context-free Non-deterministic pushdown automaton
Type-3 Regular Finite state automaton

Chomsky hierarchy

From Wikipedia, the free encyclopedia

In formal language theory, computer science and linguistics, the Chomsky hierarchy (also referred to as
the Chomsky—Schiitzenberger hierarchy) "l is a containment hierarchy of classes of formal grammars.

Linear Bounded Automata

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head isn’t permitted to move off the portion of
the tape containing the input. If the machine tries to move its head
off either end of the input, the head stays where it is—in the same
way that the head will not move off the left-hand end of an ordinary
Turing machine’s tape.

control —l

albla|b|a Finite tape

Theorem: A, ga is decidable

Arga = {(M,w)| M is an LBA that accepts string w}

thstback: TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position

How Many Possible Configurations ...
1011¢;01111

* Does an LBA have?
g states
« g tape alphabet chars
 tape of length n

« # of possible ways to fill the tape:
° gn
« ## of possible head positions:
°n
 Total Possible Configurations =/gng” it's finite!

Theorem: A, ga is decidable

Arga = {(M,w)| M is an LBA that accepts string w}
Proof: Create decider for A ga

On input <M, w>:

* Simulate M on w:
» If M accepts w, then accept <M, w>
 If M rejects w, then reject <M, w>

 If M runs for more than gng" steps ...
« ...then we are in a loop so halt and reject!

Termination
argument?

Theorem: E, ga is undecidable

Eiga = {(MH M is an LBA where L(M) — @}

thstback: TM Configuration Sequences

M = (Q, E; F; 5; q05 Qaccept QTejGCt)

Next
Single-step "¢ config Extended
(Right) aqiaB F axqgsf * Base Case
0t € O write IF Ifor any 1D [

d(q,a) = (g2,X,R)

xel a,pel” :
x af « Recursive Case

(Left) abgiaf = agabx I E Jlif there exists some ID K
if 6(q1,a) = (g2,x,L) such that I - K and K ¥ J

read

Theorem: E, ga is undecidable

Eiga = {{M)| M is an LBA where L(M) = 0}

Proof, by contradiction:
« Assume F| ga has decider R; use to create decider for At :

* On Input <M, w>, where M = (Q, %, T, 8,90, Gaccept, Greject) -

Input
toR

 Construct LBA B, whose input Is a sequence of M configs:

* First configuration is gowiws - - - wy,
- Last configuration has state g,
 Each pair of adjacent configs is valid according to M's &

e B accepts sequences of M configurations where M accepts w, i.e.,

B

[[xlalalo [#[x[x[a[o]#]-]

v
Al al
G; Cint

« Run R with B as input:
 |If R accepts B, then B's language is empty

So checking configuration

« So M has no sequence of configs that accepts w; so reject!

sequences is a key capability!

« If R rejects B, then B's language is not empty So any language that can

« So M has a sequence of configs that accepts w; so accept!

be used to check

configuration sequences

must be undecidable!

Theorem: ALLcrc is undecidable
ALLcre = {(G)| GisaCFG and L(G) = ¥*}

Proof, by contradiction
« Assume ALL.; has a decider R. Use it to create decider for Ay

On input <M, w>: Can a PDA do this?
« Construct a PDA P that rejects sequences of M configs that accept w

 Convert Pto a CFG G (previous class)

« Give G to R:
* If R accepts, then M has no_accepting config sequences for w, so reject

* If R rejects, then M has an_accepting config sequence for w, so accept

ALLcgg is undecidable

A PDA That ReJects TI\/\ M Conﬂg Sequences

i N (Q E F 5 qd0, accept QTeject)
C’1 Ci
On input—=== L — nondetermlnlstlcally:
* Reject if C; Is not Q0w ws - wy : .
g Why reject accepting
, . ,
* Reject If C, does not have Qaccept configuration sequences?
- Reject if any|C;and |C,,,|is invalid according to &: [could we create a PDA that
1. Push C; onto the stack Example accepts accepting
C, config (on the stack): q,0101 || configuration sequences?
2. Compare C; with C,,, (reversed): stack(c backwards): 1010q,
a) Checkthat initial chars match | Xt G config (revi: 1011, But that would mean
b) On first non-matching char: - read, pop, check Ecrg (dual to ALL) is
: : : undecidable??
» check that next 3 chars 1s valid according to 6
« Each possible & can be hard-coded since § is finite Ecrc = {(G)| Gis a CFG and L(G) = 0}
c) Continue checking remaining chars We already proved
d) Reject whenever anything is invalid this is decidable!

Algorithms For CFLs

* Acre = {(G,w)| G is a CFG that generates string w } Decidable
+ Ecre = {(G)| Gis a CFG and L(G) = ()} | Already proved. Decidable

° ALLCFG = {<G>’ (i is a CFG and L(G) = E*} Just proved this UndeCidable

is undecidable

These two languages tell
us something about the
threshold of decidability

Exploring the Limits of CFLs

This is similar to the
A CFL: {wl#wg ‘ (YoN] 7£ ‘LUQ} config-rejecting PDA

« PDA nondeterministically checks matching positions in 15t/2"d parts
« And rejects if any are not the same
* |.e,, Each computation branch is independent, i.e. “context free”

This is similar to the ww
 Not a CFL: {UJ1#U)2 ‘ wy = ’wz} language (not pumpable)

« Can nondeterministically check matching positions

« But needs to accept only if all branches match | An config-accepting PDA
would be like this language

* |.e., Each branch is not independent i nota CFLI
Summary: the “context freeness” of CFLs
has to do with dependency between (This is also why union is closed

non-deterministic computation branches | | for CFLs but intersection is not)

Algorithms For CFLs

* Acrc = {(G,w)| G is a CFG that generates string w }
e Fcpg = {(GH (1 is 2 CFG and L(G) _ w} Already proved

this is decidable

 ALLcre = {(G)| Gisa CFG and L(G) = ¥*} Just proved this

is undecidable

* FQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}

(Still need to prove this is undecidable)

Decidable
Decidable
Undecidable
Undecidable?

52

Theorem: FQcgc is undecidable

EQcrc = {(G. H)| G and H are CFGs and L(G) = L(H)}

* Proof by contradiction: Assume EQ.. has a decider R
 Use R to create a decider for ALL

On input <G>:
 Construct a CFG G,;; which generates all possible strings
* Run Rwith G and G,

« Accept G If R accepts, else reject

The Post Correspondence Problem
(PCP)

A unique undecidable problem

A Non-Formal Languages Undecidable Problem: PCP

» Let P be a set of “dominos” {[Z—l} 2] [Z—k}}
« Where each ¢; and b, are strings ' . g

eep={[2) (3] 2] [29)

« A match is: —
A sequence of dominos with the same top and bottom strings | allowed

Same string

GBI e

e E.g, [I N NN |
ab ab C \ a bﬁ C a\ aﬁ a lh C ‘ Same string

Ca a

* Then: PCP = { <P> | Pis a set of dominos with a match }

Theorem: PCP is undecidable

PCP ={ <P> | Pis a set of dominos with a match }

Proof by contradiction:
Assume PCP is decidable, has decider R; use It to create decider for Ay

On input <M, w>:

1. Construct a set of dominos P that
has a match only when M accepts w

2. Run R with P as input

3. Accept If R accepts, else reject

The trick: P has M's TM configurations as its domino strings

So a match is a sequence of configs showing M accepting w!

| M = (Q,E;F;(sa QOaQacceptaQre]’ect)
PCP Dominos

* First domino: [# }
#gowiws - - - wp#

« Key idea: add dominos representing valid TM steps:

it 6(q,a) = (r,b,R), put Z—a] into P

L 0T

. B rcqan .

it 6(q,a) = (r,b,L), put _ch] into P
 For the tape cells that don’t change: put _g} into P

« Top can only “catch up” if there is an accepting config sequence

PCP Example

qo0

* Letw=0100and §(qo,0) = (g7,2,R) so{—} in P

Top starts
to catch up

Bottom is valid
transition

#QOO

g0 0 1 0 0O #12 g~

2q7

Fill in with
unchanged tape

PCP DOmINOS (accepting)

* When accept state reached, let top “catch” up:

Foreverya €T,

put QA Qaccept } and [Qaccept a

] into P | Bottom “eats” one char
{accept

Only possible match: accepting Qaccept

sequence of TM configs

21 G 0 2 121 217

“eat” one char

Check-in Quiz 3/30

On gradescope

