UMB CS 420

Mapping Reducibility
Monday, April 4, 2022

%/{/{0«/{0@#(@/{13’

« HW 8 extended
« Due Wed 4/6 11:59pm EST

e HW 9 out soon

last Time: TM ACcepting Computations

A TM accepting computation is sequence of configurations, where:
1. Start Config:

So: any machine that can B
e State: start state, recognize TM accepting
« Head: at leftmost cell >€quences ... [T lwle [[*[=]=[wlo[#] -]
» Tape: has input string : .
2. End Co nﬂg: ‘W' | ... can be used to e, ...can be used to

« State: accept state implement A, decider! prove undecidability!

3. Middle Configs:
 State + Head + Tape: each step must be valid according to 6

last Tie: What Makes CFLs “Context-Free™?

* Acre = {(G,w)| G is a CFG that generates string w } Decidable

+ Ecre = {(G)| Gis a CFG and L(G) = 0} < Why is this Decidable

. = ‘ — Y* But this i :
ALLcrg = {(G)| GisaCFG and L(G) = ¥*} DU e Undecidable

This unintuitive result is explained by ...

.. the fact that PDAs can recognize non-accepting TM config sequences

Can be computed in a “context-free” way:

This gives insight into check that pairs of configs are valid nondeterministically,
what makes context- ... and accept if any are not

free languages

o S TeE ... but PDAs cannot recognize accepting TM config sequences

QCannot be computed in a “context-free” way:
check that pairs of configs are valid nondeterministically,

... and accept if all are not

The Post Correspondence Problem
(PCP)

A unique undecidable problem

66

A Non-Formal Languages Undecidable Problem: PCP

» Let P be a set of “dominos” {[Z—l} 2] [Z—k}}
« Where each ¢; and b, are strings ' . g

eep={[2) (3] 2] [29)

« A match is: —
A sequence of dominos with the same top and bottom strings | allowed

Same string

GBI e

e E.g, [I N NN |
ab ab C \ a bﬁ C a\ aﬁ a lh C ‘ Same string

Ca a

* Then: PCP = { <P> | Pis a set of dominos with a match }

Theorem: PCP is undecidable

PCP ={ <P> | Pis a set of dominos with a match }

Proof by contradiction:
Assume PCP is decidable, has decider R; use It to create decider for Ay

On input <M, w>:

1. Construct a set of dominos P that So a match is a
has a match only when M accepts w<— sequence of configs
2. Run R with P as input showing M accepting w!

3. Accept if R accepts, else reject

|dea: P has M’'s TM configurations as its domino strings

M = (Q, E; Fa 67 q0, Qaccept; QI‘ejeCt)

PCP DOomInos

#
#gowwsy - - - wy] St config (on bottom)

e First domino: {

« Key idea: add dominos representing valid TM steps:

it 6(q,a) = (r,b,R), put Z—a] into P
L OT
: B rcqa .
it 6(q,a) = (r,b,L), put _—ch] into P
 For the tape cells that don’t change: put _g} into P

« Top can only “catch up” if there is an accepting config sequence

PCP Example

qo0

* Letw=10100and d(qg,0) = (g7, 2,R) so{—} in P

Top starts
to catch up

Bottom is valid
transition

#(JOO

£ g0 1 0 0 #]2

qr

2q7

Fill in with
unchanged tape

PCP DOmINOS (accepting)

* When accept state reached, let top “catch” up:

Foreverya €T,

a Qacce t Qacce t a
P } and [P

] into P | Bottom “eats” one char
{accept

put |
Only possible match: Qaccept

accepting sequence of TM configs

21 G 0 2 121 217

“eat” one char

Mapping Reducibility

" yy ATm = {(M,w)| M isa TMand M accepts w} known
flaskback: “Reduced 1

HALT v = {(M,w)| M is a TM and M halts on input w} unknown

Thm: HALT 1\ 1s undecidable
Proof, by contradiction:
« Assume HALTtm has decider R; use to create Aty decider:

..intoan || S = “On input,(M, w), an encoding of a TM M and a string w: |

Aqy string 1. RunTM R on input,(M, w). Use R to first check if M will loop on w
Essentially, we (2, If R rej ;reject. Then run M on w knowing it won't loop
e . If R accepts, simulate M on w until it halts.
hypothetical : : L,
HALT;, string ... | 4= If M has accepted, accept; if M has rejected, reject.

 Contradiction: A,y Is undecidable and has no decider!
Let's formalize this conversion, i.e., mapping reducibilty

[lashback: Anpa is a decidable language

Anra = {(B,w)| B is an NFA that accepts input string w }

Decider for Anga :

N = “On input (B, w), where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA (', using the procedure
NFA-DFA

2. Run TM M on input (C, w).
3. If M accepts, accept; otherwise, reject.”

We said this NFA>DFA
algorithm is a TM, but it
doesn’t accept/reject?

More generally, we've been saying
“programs = TMs”,
but programs do more than accept/reject?

Defintior: COMputable Functions

« Has TM that, instead of accept/reject, “outputs” final tape contents

A function f: ¥X*—3* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
 E.g, adding states, changing transitions, wrapping TM in TM, etc.

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if w € A then filw) € B

f
.///—--_\A.
“reverse” direction (<): if lw) e Bthen we 4

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

thstback: EQqUIValence of Contrapositive

“If X then Y”|is equivalentto ... ?

« “If Ythen X" (converse)
e No!

e “If not Xthen not Y” (inverse)
e No!

v“If not Y then not X”|(contrapositive)
* Yes!

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if w € A then filw) € B

“reverse” direction («): if flw) e Bthen we A

Equivalent (contrapositive): if w & A then f{lw) ¢ B

Proving Mapping Reducibility: 2 Steps

Step 1:
Show there is computable

Language A is mapping reducible to language B, written A <, B,|Tnf... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w, Step 2
w e A< f(w) € B. “if and only if” | | Prove the iff is true

The function f is called the reduction from A to B.
Step 2a: “forward” direction (=): if w € Athen f{lw) € B

Arm = {{M,w)| M isa TM and M acce

Step 2b:“reverse” direction (<): if flw) E Bthen w e A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b: Equivalent (contrapositive): if w & A then filw) ¢ B

Thm: A+m1s mapping reducible to HALT twm

Arm = {(M,w)| M isa TM and M accepts w}

¢ TO ShOW: ATM Em HALTTM

Step 1: computable fn f <M, w> > <M’, w> where:
<f\/f, ’UJ) € Atm if and Ollly if <ﬂ/ff., ’EU’) € HALT tm

Step 2:
M acceptsw
if and only If

M’ halts on w
|

The following machine F' computes a reduction f.

F = “On input (M, w):

1. Construct the following machine M”%
M'" = “On input x:
1. Run M on z.
2. It M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M",w).” | M’is like M, except it
always loops when it
Output new M’ doesn’t accept

g

HALTtv = {(M,w)| M is a TM and M halts on input w}

Converts M to M’

Language A is matnino reducible to language B, written A <,,, B,
if there i a computable function f: ¥*—3*, where for every w,

we A+ f(w) € B.
The function f is called the reduction from A to B.

A function f: ¥*—Y* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

= If M accepts w, then M’ halts on w
« M’ accepts (and thus halts) if M accepts

< If M’ halts on w, then M accepts w

< (Alternatively) If M doesn’t accept w, then M’ doesn’t halt on w (contrapositive)
« Two possibilities for non-acceptance:

1. M loops: M’ loops and doesn’t halt | Py

2. Mrejects: M’ loops and doesn’t halt | AMM
L f N
./”——_‘\

The following machine F' computes a reduction f.

F = “On input (M| w): -
1. Construct the following machine M.

M'|= “On input z:

1. Run M on z.

2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”

82

Uses of Mapping Reducibility

« To prove Decidability

« To prove Undecidability

Thm: If A <, B and B is decidable, then A is decidable.

Must create decider

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.

We describe a decider NV for A as follows.

N = “On input w:

We know 1. Compute f(w)

Ehc'i fﬂt]';”ieff 2. Run M on input f(w) and output whatever M outputs.”

(specificall decides
y reverse
direction) f

Language A is mapping reducible to language B, written A <,,, B,

; if there is a computable function f: ¥* — 3%, where for every w,
T, we A f(w) € B.
84
The function f is called the reduction from A to B.

COro: If A <., B and A is undecidable, then B is undecidable.

* Proof by contradiction.

« Assume B is decidable.

« Then A4 is decidable (by the previous thm).

 Contradiction: we already\said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Summary: ShOWING Mapping Reducibility

Step 1:
Show there is computable
. . ‘ . fn f... by creating a TM
Language A is mapping reducible to language B, written A <, B,

if there is a computable function f: ¥* — ¥* where for every w, Step 2:

w e A< f(w) € B. “if and only if” | | Prove the iff is true

The function f is called the reduction from A to B.
Step 2a: “forward” direction (=): if w € Athen f{lw) € B

f
.//_—"_\A.
Step 2b:“reverse” direction (<): if flw) E Bthen w e A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b: Equivalent (contrapositive): if w & A then filw) ¢ B

Summary: USINg Mapping Reducibility

To prove decidability ...

« If A <, B and B is decidable, then A is decidable.

Unknown

Known
(want to prove)

To prove undecidability ...

« If A <,, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Alternate Froof- The Halting Problem

HA LT+ 1s undecidable

« If A<, Band A isundecidable, then B is undecidable.

Must be known

¢ ATM <m HALTTM

« Since Ay Is undecidable,
» ... and we showed mapping reducibility from A}, to HALT,,,
 then HALT, I1s undecidable n

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

« Assume FQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Ery <m EQtm
Step 1: create computable fn £ <M> > <M, M,>, computed by §

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility (exercise)

And use theorem ...
If A <,, B and A is undecidable, then B is undecidable.

Flashback, E+m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Proof, by contradiction:
« Assume Etnm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:

) 1. Ifx # w, reject.

2. Run Ron mput <M1> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.” \ |
If M acceptsw, M, not in E,!

 So this only reduces Aty to Fry

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Show mapping reducibility??: Atm <m E1m
Step 1: create computable fn f; <M, w> > <M’>, computed by S

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M; = “On input z:
1. Ifx # w, reject.

2. Output: < Il) 2. Ifz = w, run M on input w and accept it M does.”
3. It Raccepts; reject; it R rejects; accept.” |

Y If M accepts w, M, not in E !
 So this only reduces Aty to Fry —

* It's good enough! Still proves Erw is undecidable fﬁﬁﬁéﬁi@?@éﬁé’fbmty
* Because undecidable langs are closed under complement (exercise)

Undecidable Langs Closed under Complement

Proof by contradiction

 Assume some lang L is undecidable and L is decidable ...
« Then L has a decider

Contradiction!

. ... then we can create decider for L from decider for L ...
 Because decidable languages are closed under complement (hw8)!

Check-in Quiz 4/4

On gradescope

