UMB CS 420

Unrecognizability
Wednesday, April 6, 2022

%/{/{0«/{0@#{@/{&?

« HW 8 In
+ Pye-Wed-4/6-11:59pmEST

* HW 9 out
e Due Sun 4/17 11:59pm EST

last Tiwe: SHOWING Mapping Reducibility

Step 1:
Show there is computable
Language A is mapping reducible to language B, written A <., B|fnf... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w, Step 2:

w e A<= f(w) € B. “if and only if” | | Prove the iff is true for f

The function f is called the reduction from A to B.
Step 2a: “forward” direction (=): if w € Athen f{lw) € B

f
.//_—"_\A.
Step 2b:“reverse” direction (<): if flw) E Bthen w e A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b: Equivalent (contrapositive): if w & A then filw) ¢ B

last Tire: USING Mapping Reducibility

To prove decidability ...

« If A <, B and B is decidable, then A is decidable.

Undecidability Proof
Unknown Technique #4:

(want to prove) Taﬂzi:hgezfgrl:]cibility

Known

To prove undecidability ...

« If A <, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

« Assume FQ+,, has decider R; use to create Et\u decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Frp <m EQty
Step 1: create computable fn f, computed by TM S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of‘mapping reducibility
V] = |f <M> € Ey, then <M, M,> € EQy,
vl < If <M> & E7y, then <M, M;> & EQqmy

And use theorem ...
If A <,, B and A is undecidable, then B is undecidable.

Flashback, E+m 1s undecidable

Proof, by contradiction:

ETM = {<M>‘ M is a TM and L(M)

« Assume Etnm has decider R; use to create Aty decider:

2. Run R on input (M;).

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M,

M, = “On input z:

1. Ifx # w, reject.
2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.”

|
1 If M accepts w, M, not in E,,!

0}

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Show mapping reducibility??: A+pm <m Etm
Step 1: create computable fn f: <M, w> 2> <M,>, computed by S

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:
1. Ifx # w, reject.

2, Output: <J\/fl> 2. Ifz = w, run M on input w and accept if M does.”
3 IcC o 1 LT o wn oot Y
. 11T v acCepts, 7eject; iI 11 T€JECTS, GCCePt.

Step 2: show iff requirements of mapping reducibility:
7= If <M, w> € Ay, then <M, >|€|E7y
7< If <M, w> & Aqy, then <M,>|€|E7y

* This reduces A}, to Bty !
* |t's good enough, if: undecidable langs are closed under complement

Undecidable Langs Closed under Complement

Proof by contradiction

 Assume some lang L is undecidable and L is decidable ...
« Then L has a decider

Contradiction!

. ... then we can create decider for L from decider for L ...
 Because decidable languages are closed under complement (hw8)!

Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these
undecidable languages go?

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...
... The set of all infinite binary sequences

e Llemma 2: The set of all TMs is countable

« Therefore, some language is not recognized by a TM
(pigeonhole principle) o

Mapping a Language to a Binary Sequence

All Possible Strings |
< >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language .
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) (XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

This is an “existence” proof,

but it's not “constructive”,

l.e., it doesn’t give an example of
an unrecognizable language

« Lemma 1: The set of all languages is uncountable
« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences

> Now just prove set of infinite binary sequences is uncountable (exercise)

e Llemma 2: The set of all TMs is countable

« Because every TM M can be encoded as a string <M>

« And set of all strings is countable

« Therefore, some language is not recognized by a TM

B 109

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

m

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

« Decidable => Recognizable:
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable => Recognizable:
« A decideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable
 Let M, = recognizer for the language,
- and M, = recognizer for its complement

e Decider M:

* Run 1steponM,,
* Run1steponM,,
« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject

Termination Arg: Either M, or M, must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

« We've proved:

Atwm is Turing-recognizable

A+m 1s undecidable

e So:

Unrecognizability

A1m 1s not Turing-recognizable S —

« Because: recognizable & co-recognizable implies decidable

Is there anything out here?

ATm Atm

context-free

Where do these
undecidable languages go?

regular

Erm = {{M)| M isaTM and L(M) = 0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Using Mapping Reducibility to Prove ...
« Decidability

» Undecidability

« Recognizability

« Unrecognizability

More Helpful Theorems

It A <, Band B is Turing-recognizable, then A is Turing-recognizable.

If A <, Band Aisnot Turing-recognizable, then B is not Turing-recognizable.

Unrecognizability

Proof Technique #2:
« Same proofs as: Mapping reducibility

If A <,, B and B is decidable. then A is decidable. + this theorem
If A <,, B and A is undecidable, then B is undecidable.

T h M : EQ 1y 1s neither Turing-recognizable nor co-Turing-recognizable.

EQ<ym = {(M1, M2)| My and Ms are TMs and L(M;) = L(M>)}
1. EQ+p 1S not Turingg-rec onizable
| Atm
ATm —_
Turing-recognizable
decidable ™\
»
context-free
re%ular
=
Atm _ EQqy EQTy

17 < o and A is not Turing-recognizable, then 5 1s not Turing-recognizable.

Mapping Reducibility implies Mapping Red. of Complements

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w e A<= f(w) € B.

The function f is called the reduction from A to B.

A<y, B

implies

A<, B

Thm:EQsy is neither Turing-recognizable nor co-Turing-recognizable.
EQ+y = {{(Mi,Ms)| M; and M, are TMs and L(M;) = L(M2)}

1. EQ+1p 1s not Turing-recognizable
Two Choices:
 Create Computable fn: Atm 2 EQ+y

. Or Computable fn: Atm =2 EQqy

And use theorem ...

If A <., B and Ais not Turing-recognizable, then B is not Turing-recognizable.

Thm: EQ+y, is not ‘Turing-recognizable

EQ+y = {{(My, Mz)| My and My are TMs and L(M;) = L(Ma2)}

» Create Computable fn: Aty = EQ1y,
CS:mepr:t:ble <IVL w) -> <ﬂ/1.1}]\/fg) M, and M, are TMs and L(M,) & L(M>)

fn

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing

1. Reject.”
M, = “On any input: < | Accepts nothing or everything |

1. Run M on w. If it accepts, accept.”
2. Output (M, M5).”

Step 2, iff: f
= If M accepts w, then M, # M, e . a

< If M does not accept w, then M, = M, T

Thm:EQ+y is neither Turing-recognizable nor co-Turing-recognizable.
EQTM == {<M1}ﬂ/f2)| ﬂ/fl and ﬂ/fg are TMs f:l]_'ld L(Ml) = L(ﬂ/fz)}

1. EQt)y 1s not Turing-recognizable

. Or Computable fn: Aty = EQry

And use theorem ...

 DONE! If A <, B and A is not Turing-recognizable, then B is not Turing-recognizable.

2. ETM is not &¢-Turing-recognizable
* (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)

122

Frevions:EQ+y is not Turing-recognizable
EQ+y = {{(My, M2)| My and Ms are TMs and L(M;) = L(M2)}

* Create Computable fn: Avm =2 EQy,

Step 1 |® <]ij'z1 w) -> <]\/]'1?]\/1'2) M, and M, are TMs and L(M;) ¥ L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M>.
M; = “On any mput: <— Accepts nothing
1. Reject.”
M, = “On any input: < | Accepts nothing or everything
1. Run M on w. If it accepts, accept.”
2. Output (M, Ms).”

123

NOW: EQ+y is not Turing-recognizable
EQty = {(M1, Ma)| My and Ms are TMs and L(M;) = L(Ma>)}

- Create Computable fn: Aty = B0y,

Step 1 |® <]ij'j w) - <]\/]'1?]\/1'2) M, and M, are TMs and L(M;) & L(M)

F' = “On input (M, w), where M is a TM and w a string:
1. Construct the following two machines, M; and M.
M = “On any input: <— Accepts nething everything
1. Accept.”
M, = “On any input: < | Accepts nothing or everything

1. Run M on w. If it accepts, accept.”
2. Output (M;, My).”

Step 2, iff e f a
= If M accepts w, then M,|=IM, ;

DONE! | < f M does not accept w, then M,[# M, .

Unrecognizable Languages?

ATm Arm

' Turing-recognizable

decidable

context-free

regular
Where do these go?

Erm = {{M)| M isaTM and L(M) = 0}

EQcec = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

regular
Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}

next |EEE) EQcrc = {(G.H)| G and H are CFGs and L(G) = L(H)}

Thm: EQ.¢; IS not Turing-recognizable

I - i " ' ' Unrecognizability
Recognizable & co-recognizable implies decidable P

« We've proved:
FEQ e 1s undecidable

m=) « \\e now prove:
EQc¢ 1S co-Turing recognizable

* And conclude that:
* EQ.c IS Not Turing recognizable

Thm: EQ.¢: 1S co-Turing-recognizable

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recognizer for EQ

« On Input <G, H>:
 For every possible string w:

 Acceptifw € L(G) and w & L(H) Acrc = {(G,w)| G is a CFG that generates string w}
« OracceptifwelL(H)andw ¢ L(G)

* Else reject

This is only a recognizer because
it loops for ever when L(G) = L(H)

Unrecognizable Languages

ATm Arm

' Turing-recognizable

decidable

context-free

regular
Where do these go?

Etm ={(M)| MisaTMand L(M) = ()}
?? EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Unrecognizable Languages

A Atwm
M E
i | Qrm
uring-recognizable
decidable E QTM
context-free EQCFG

Where do these go?

next |EEE) Ery = {(M)| M isaTMand L(M) = 0}

Thm: E;, Is not Turing-recognizable

I - i " ' ' Unrecognizability
Recognizable & co-recognizable implies decidable P

« We've proved:
« E- I1s undecidable

== « \We now prove:
E;y 1S CO-Turing recognizable

« And then conclude that:
« E- Is not Turing recognizable

Thm: E;,, IS co-Turing-recognizable

Erm ={(M)| MisaTMand L(M) = 0}

Recogn izer for ETM: Let s1, s2, ... be a list of all strings in ¥*

“On input (M), where M is a TM:
1. Repeat the following fori =1,2,3,....
2. Run M for i steps on each input, s1, S2, . . ., Si.
3. If M has accepted any of these, accept. Otherwise, continue.”

This is only a recognizer because it
loops for ever when L(M) is empty

Unrecognizable Languages

Atwm

' Turing-recognizable

decidable

context-free

Check-in Quiz 4/6

On gradescope

