UMB CS 420
Turing Machines and Recursion
Monday, April 11, 2022

[WUY T VBVE NO FRIENDS, REASON #1739 |
UNIMPRESAWE MINDBLOWING EACTS

DID YOU KNOW TUKT

THE WORD “RECURSION” CONTAWNG
THE WORD “RECURSION
N /7SELF?

W OG0A .~
THATS AMAZ..
YOU'RE AN
PESSHOLE.

%/{/{0«/{0@#(@/{13’

« HW 9
e due Sun 4/17 11:59pm EST

* No lecture next Monday 4/18

Recursion In Programming

(define (n)
(1T (n)

(* n (factorial (n)))))

Most programming languages allow
a function to call itself recursively,
even before it's completely defined!

Live Coding: Recursive Functions

 Recursion: typically “built into” a programming language

(define (n)
(1T (n)

(* n (factorial (n)))))

Next:
« Does recursion need to be a “built into” the language?
« E.g, Could you write this same function ...
... In a language without explicit recursion?

Turing Machines and Recursion

We've been saying: “A Turing machine models programs.”

Q: Is a recursive program modeled by a Turing machine?

A Turing machine is a 7-tuple, (Q,%, T, 5, o, Gaccept; Greject), Where
Q, X, I are all finite sets and

1. @ is the set of states,

A: YeS! 2. X is the input alphabet not containing the blank symbol o,
oy s . . 3. T is the tape alphabet, where u € I"'and X C T,
¢ B Ut |t SN Ot exp |.| Clt. 4, 5: Q xI'—@Q x T x {L, R} is the transition function,

5. qo € Q is the start state,

* In fact, it's a little complicated. ¢, " 0is the sccept state, and

° N eed to prove it . 7. rejece € Q 1s the reject state, where grejece 7 Gaccept-
Where's the recursion

in this definition???

Today: The Recursion Theorem

The Recursion Theorem

* You can write a TM description like this:

B = “On input w:
1. Obtain, via the recursion theorem, own description (B).

Example Use Case

The Recursion Theorem

Arm = {(M,w)| M isaTM and M accepts w}

Prove Atm 1s undecidable, by contradiction:
assume that Turing machine H decides Aty

B = “On input w:
1. Obtain, via the recursion theorem, own descriptien<{B).
2. Run H on input (B w).

3. Do the opposite.of what H says. Thatis, accept if H rejects and

" L] ,,
reject it H accepts. This is the impossible “D” machine,
(L) (M) (My) My - (D)]

M, | accept reject accept reject accept it does the Opp()Site Of itself,
W2 | accept acoepl acceph acoept - occepy defined using recursion!
3 | reject reject reject reject reject

Mi | accept accept reject reject aweept | (prev. defined using diagonalization)

D reject reject accept accept ?

How can a TM “obtain it's own description?”

How does a TM even know about “itself”
before it's completely defined?

Where “Recursion” Comes From

A Turing machine is a 7-tuple, (Q,X, T, d, qo, Gaccepts reject), Where
Q, ¥, T are all finite sets and
1. Q is the set of states,
2. ¥ 1s the input alphabet not containing the blank symbol o,
TMS: 3. I' is the tape alphabet, where u € I"and ¥ C T,
4.6: Q xI'—Q x I x {L, R} 1s the transition function,
. qo € @ 1s the start state,

1. Have a string representation
2. Can Si mu late Other TMS . Greject € @ 1s the reject state, where greject 7 Gaccept-
3. Can receive other TMs as input Where's the recursion???

~I N W

+ Gaceept € @ 1s the accept state, and

So to simulate recursion ...
... add an extra input and assume it will be copy of yourself!

Idea:
TMs can receive TMs as input;

A SI M pler Exe rClse Just assume input will be yourself!

(because a TM definition, like a

Our Task: program, is just a string)

* Create a TM that, without using recursion, prints itself.
« How does this TM get knowledge about “itself”?

: : “TM input” “TM”
« An example, In English: 'lnPUt /

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

. e , “argument”
* This TM knows about “itself”, (the TM gets itself
 but it does not explicitly use recursion! from its input!)

Live Coding: Self-Printing Program

Qur Task:

 Create a program that, without using recursion, prints itself.

“in put"

« An example, in English: l

“itself”

/

; : . . y
Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

“argument”
(program gets itself
from its input!)

11

Interlude: Lambda

. A (very high-level)
« A =anonymous function, e.g. (A (x) x) Turing Machine

« C++: [](int x){ return x; }
.]ava;(x) -> { return Xx, }
 Python: Llambda x : X

¢ JS: (x) => { return x; }

Live Coding: Self-Printing Program

Qur Task:

 Create a program that, without using recursion, prints itself.

“in put"

« An example, in English: l

“itself”

/

; : . . y
Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

“argument”
(program gets itself
from its input!)

13

A Self-Printing Program

Print out two copies of the_following, the second one in quotes:

f

“Print out two copies of the following, the second one in quotes:”

‘ \

“function” “parameter” - -
argument

str)

29akRdaB] (could have inlined this)

First copy Second copy (quoted)

g creates a TM (that prints a string) 11,
and outputs it as a string (i.e,, it's “quoted”) 2]

Sel,f_Prl ntl ng TU rl ng I\/\aCh | ne So g(<M>) prints a “quoted” M

5]

|

“argument”
(the TM itself,
encoded as string)

The following TM) computes g(w).

@ = “On input string w:
1. Construct the following Turing machine P,.
P, = “On any input: 1]
1. Erase input.
2. Write w on the tape.
3. Halt.”
2. Output (P,).” | [2]

“TM"

>B = “On input (M), where M is a portion of a TM:

Second (quoted) copy Compute q((ﬂ/i’)).
— Firstcopy | Combine the result with (M) to make a complete TM.

(W;[{\Ablg Iiot:zl f 3. Print the description of this TM and halt.”

B

<_‘

rint out two copies of the following, the second on in quotes:

15

SELF, Defined With The Recursion Theorem

SELF = “On any input:
1. Obtain, via the recursion theorem, own description (SELF').
2. Print (SELF).”

« So a TM doesn’t need explicit recursion to call itself!

« What about TMs that do more than “print itself”?

Could we write a recursive program that
does something other than print “itself”?

A Recursion Code Example

n (factorial (n)))))

The Recursion Theorem, Formally

Recursion theorem Let

T

be a Turing machine that computes a function

t: X* x ¥*—X*. There is a Turing machine R that computes a function
r: X*— ¥* where for every w,

In English:

r(w) = t((R),w).

« If you want a TM R that can “obtain own description” ...

. ... instead create a TM|T with an extra “itself” argument ...

e ... then construct Rfrom T |2??

Recursion Theorem, A Code Example

Recursion

Theorem
n) :: R says: can
o always
¢ H:yOU want; convert

« Recursive fn n (factorial (n)))) 2" one to
15t one

(define (ITSELF n) ;; T
e Instead create: (if (1))

« Non-recursive fn (

n (ITSELF (n)))))

But how???

The Recursion Theorem, Pictorially

e To converta “T" to “R":

A

5]

(:P(HT})

-

control for R

AB = SELF (prev slide)

T = machine that gets
SELF as argument

R = Twithout explicit
SELF argument

1. Construct A = program constructing <BT>, and
2. Pass result to B (from before),

3. which passes “itself” to T

Non-Printing Uses of SELF

« Program that prints “itself”:

((A (SELF) (print2x SELF))

) eta-expansion:
Any function f = Ax.(f x)

 Program that runs “itself” repeatedly (i.e,, it infinite loops):

((A (SELF) (SELF SELF) Call arg fn with itself as arg
(A (SELF) (SELF SELF))) Don’t convert arg to string

« Loop, but do something useful each time?

“package up” the
recursion

(A (f)

((A (SELF) (f (SELF SELF))) ((A (SELF) (f (A"(v) ((SELF SELF) v))))

(A (SELF) (f (SELF SELF))))) (A (SELF) (f (A (v) ((SELF SELF) v))))))

 None of these programs use explicit recursion! Y combinator

Recursion Theorem Proof: Coding Demo

* Program that passes “itself” to another function:
Y combinator

Pass to

e Function|that needs “itself”

Y combinator is
the “converter”
guaranteed by

(define™ ITSELF n) the Recursion
(1f (n) Theorem!

(* n (ITSELF (n)))))

Fixed Points

« Avalue x is a fixed point of a function fif f{x) =x

Recursion Theorem and Fixed Points

Let t: ¥*——Y* be a computable function. Then there is a Turing machine
F for which ¢((F)) describes a Turing machine equivalent to F. Here we’ll
assume that if a string isn’t a proper Turing machine encoding, it describes a
Turing machine that always rejects immediately.
Fixed pointis a

In this theorem, ¢ plays the role of the transformation, and F is the fixed point. TM that is

unchanged by
PROOF Let F' be the following Turing machine. the function
F' = “On input w:

1. Obtain, via the recursion theorem, own description (F’).
2. Compute t((F')) to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F') and t((F)) = (G) cescribe equivalent Turing machines because
F' simulates G.

e |.e,, Recursion Theorem implies:

« “every TM that computes on TMs has a fixed point”
 As code: “every function on functions has a fixed point”

Y Combinator

 mk-recursive-fn =a “fixed point finder”

(define mk-recursive-fn
(A (T)

((A (x) (T
(A (x) (T

- factorial is the fixed point of mk-factorial

Sumarg: Where “Recursion” Comes From

A Turing machine is a 7-tuple, (Q,X, T, d, qo, Gaccepts reject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

2. ¥ 1s the input alphabet not containing the blank symbol o,
3. I' is the tape alphabet, where u € I"and ¥ C T,

4.6: Q xI'—Q x I x {L, R} 1s the transition function,

5

6

7

e TMs:
1. Have a string representation
2. Can receive other TMs as input e 1) is the eiecrerate yrhere Gan S
3. Can simulate other TMs Where’s the recursion???

. qo € Q 1s the start state,
- Qaccepe € @ 1s the accept state, and

 That's enough to achieve recursion!

PROBLEMS
WITH
REC\);QS\ON

I
¢P_ense %ulfe one 4—

Check-in Quiz 4/11

On gradescope

