VMB CS 420 NP-Completeness

Wednesday, April 27, 2022

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



Announcements

- HW 10 in
 - Due Tues 4/26 11:59pm EST

- HW 11 out
 - Due Tues 5/3 11:59pm EST
- 5 lectures left!

No final exam

Last Time: Verifiers, Formally

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

A verifier for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

extra argument:
can be any string that helps
to find a result in poly time
(is often just a result itself)

certificate, or proof

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

• Cert c has length at most n^k , where n = length of w

Last Time: The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

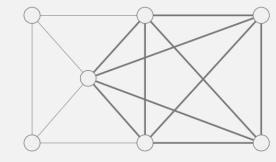
2 ways to show that a language is in **NP**

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Last Time: NP Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes



set sum

- $SUBSET\text{-}SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some}$ $= \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t\}$ sum
 - Some subset of a set of numbers S must sum to a total t
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in **NP**, create <u>either</u>:

- **Deterministic** poly time **verifier**
- Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

Don't forget to compute run time!

Does this run in poly time?

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

To prove a lang is in **NP**, create <u>either</u>:

- **Deterministic** poly time **verifier**
- Nondeterministic poly time decider

Don't forget to compute run time! **Does this run in poly time?**

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

$$N =$$
 "On input $\langle S, t \rangle$:

Nondeterministically runs the verifier on each possible subset in parallel

- 1. Nondeterministically select a subset c of the numbers in S.
- \rightarrow 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

Last Time: NP VS P

P The class of languages that have a **deterministic** poly time **decider**

I.e., the class of languages that can be solved "quickly"

• Want search problems to be in here ... but they often are not

NP

The class of languages that have a **deterministic** poly time **verifier**

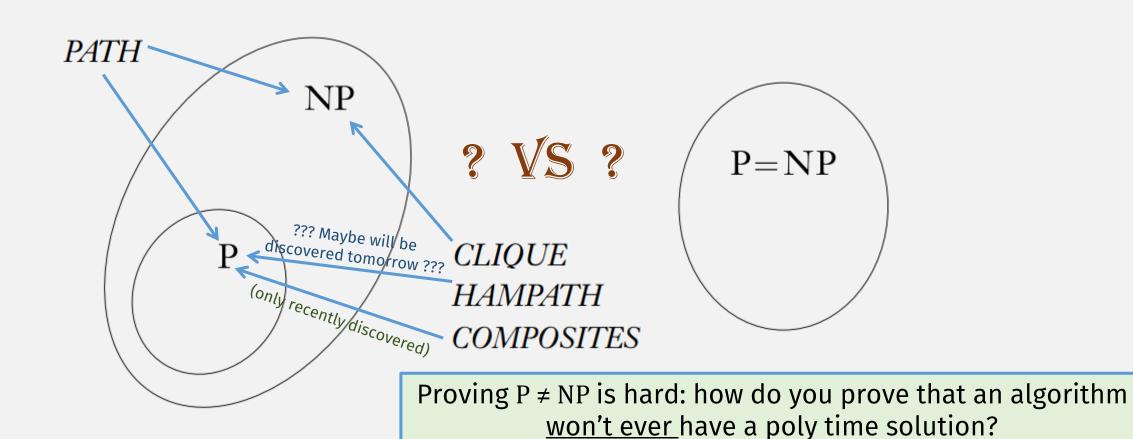
Also, the class of languages that have a nondeterministic poly time decider

I.e., the class of language that can be verified "quickly"

Actual <u>search</u> problems (even those not in P) are often in here

One of the Greatest unsolved

Does P = NP?



(in general, it's hard to prove that something doesn't exist)

Not Much Progress on whether P = NP?

The Status of the P Versus NP Problem By Lance Fortnow Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 10.1145/1562164.1562186 LANCE FOR THE IMPOSSIBLE

- One important concept:
 - NP-Completeness

NP-Completeness

DEFINITION

A language B is **NP-complete** if it satisfies two conditions:

Must prove for all langs, not just a single language

- 1. B is in NP, and easy
- \rightarrow 2. every A in NP is polynomial time reducible to B. hard????

How does this help the P = NP problem?

What's this?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

Flashback: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

IMPORTANT: "if and only if" ...

The function f is called the **reduction** from A to B

To show **mapping reducibility**:

- 1. create computable fn
- 2. and then show forward direction
- 3. and reverse direction (or contrapositive of forward direction)

 $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ $HALT_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ halts on input } w\}$

... means $\overline{A} \leq_{\mathrm{m}} \overline{B}$

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

Language A is *mapping reducible* to language if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A

To show poly time mapping reducibility:

- 1. create computable fn
- 2. show computable fn runs in poly time
- 3. then show forward direction
- 4. and show reverse direction(or contrapositive of forward direction)

Language A is *polynomial time mapping reducible*, or simply *polynomial time reducible*, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

Don't forget: "if and only if" ...

The function f is called the **polynomial time reduction** of A to B.

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

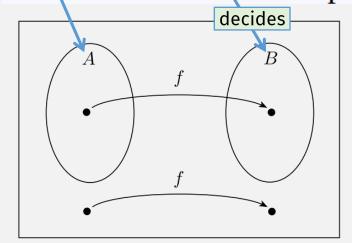
Flashback: If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- decides 2. Run M on input f(w) and output whatever M outputs."



This proof only works because of the if-and-only-if requirement

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

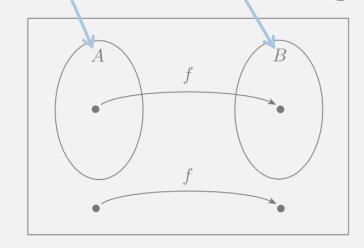
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\frac{m}{P}} B$ and $B \stackrel{\in}{\text{is decidable}}$, then $A \stackrel{\in}{\text{is decidable}}$.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

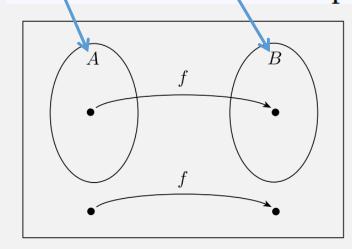
The function f is called the **reduction** from A to B.

Thm: If $A \leq_{\underline{m}} B$ and $B \stackrel{\in Y}{\text{is decidable}}$, then $A \stackrel{\in Y}{\text{is decidable}}$

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

N = "On input w:

- **1.** Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."



poly time Language A is mapping reducible to language B, written $A \leq_{\text{m}} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** from A to B.

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

To prove P = NP, must show:

- 1. every language in P is in NP
 - Trivially true (why?)
- 2. every language in NP is in P
 - Given a language $A \in NP ...$
 - ... can poly time mapping reduce A to B
 - because *B* is NP-Complete
 - Then A also $\in \mathbf{P}$...
 - Because $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$

A language B is **NP-complete** if it satisfies two conditions:

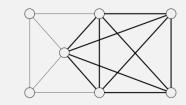
1. B is in NP, and

DEFINITION

2. every A in NP is polynomial time reducible to B.

Next: How to do poly time mapping reducibility

Thus, if a language B is NP-complete and in P, then P = NP



Last Time: CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- **3.** If both pass, accept; otherwise, reject."

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

Boolean Satisfiability

• A Boolean formula is satisfiable if ...

• ... there is some **assignment** of TRUE or FALSE (1 or 0) to its variables that makes the entire formula TRUE

- Is $(\overline{x} \wedge y) \vee (x \wedge \overline{z})$ satisfiable?
 - Yes
 - x = FALSE,
 y = TRUE,
 z = FALSE

The Boolean Satisfiability Problem

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: SAT is in NP:

Let n = the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Plug values from c into ϕ , Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

??

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$

A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \lnot)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

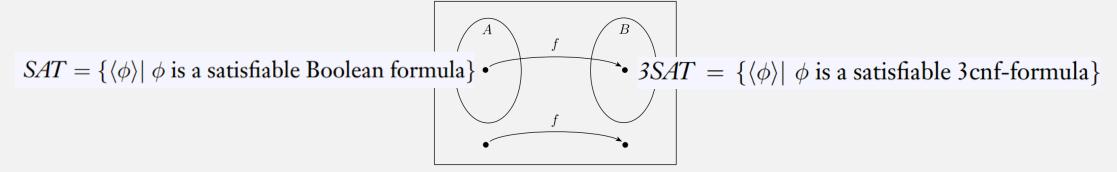
A Boolean	ls	Example:
Value	TRUE or FALSE (or 1 or 0)	TRUE, FALSE
Variable	Represents a Boolean value	x, y, z
Operation	Combines Boolean variables	AND, OR, NOT $(\land, \lor, and \neg)$
Formula ϕ	Combines vars and operations	$(\overline{x} \wedge y) \vee (x \wedge \overline{z})$
Literal	A var or a negated var	$x \text{ or } \overline{x}$.
Clause	Literals ORed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
Conjunctive Normal Form (CNF)	Clauses ANDed together	$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6)$
3CNF Formula	Three literals in each clause	$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$

∧ = AND = "Conjunction"
∨ = OR = "Disjunction"
¬ = NOT = "Negation"

The *3SAT* Problem

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$

Theorem: SAT is Poly Time Reducible to 3SAT



To show poly time <u>mapping reducibility</u>:

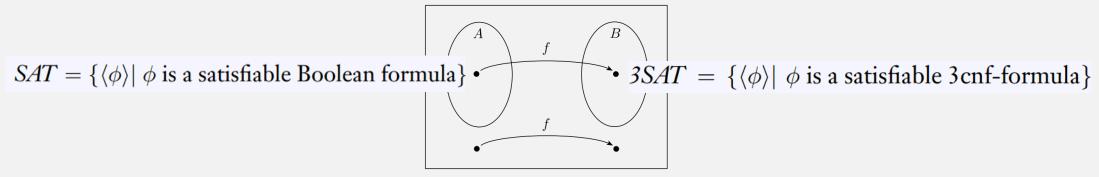
- 1. create **computable fn** *f*,
- 2. show that it runs in poly time,
- 3. then show **forward direction** of mapping red., \Rightarrow if $\phi \in SAT$, then $f(\phi) \in 3SAT$
- 4. and reverse direction

 \Leftarrow if $f(\phi) \in 3SAT$, then $\phi \in SAT$

(or contrapositive of forward direction)

 \Leftarrow (alternative) if $\phi \notin SAT$, then $f(\phi) \notin 3SAT$

Theorem: SAT is Poly Time Reducible to 3SAT



<u>Need</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

1. Convert ϕ to CNF (an AND of OR clauses)

Remaining step: show iff relation holds ...

a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(\mathbf{n})$$

b) Distribute ORs to get ANDs outside of parens

$$(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$$
 $O(n)$

2. Convert to 3CNF by adding new variables

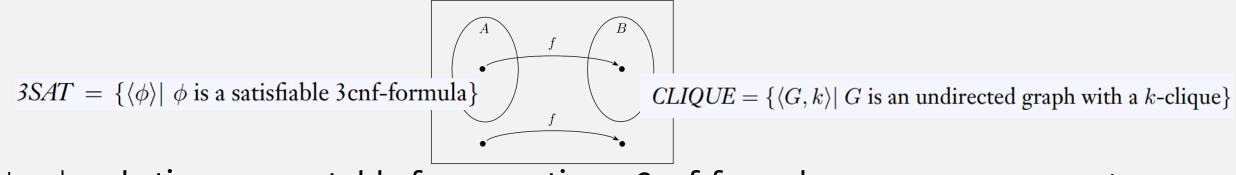
$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4) \bigcirc (\mathbf{n})$$

... this thm is special, don't need to separate forward/reverse dir for this thm: bc <u>each step is</u> <u>already a known "law"</u>

 $3SAT = \{\langle \phi \rangle | \ \phi \text{ is a satisfiable 3cnf-formula}\}$ $CLIQUE = \{\langle G, k \rangle | \ G \text{ is an undirected graph with a k-clique}\}$

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction(or contrapositive of forward direction)



Need: poly time computable fn converting a 3cnf-formula ...

Example: $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

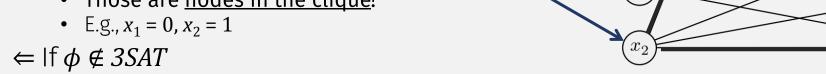
Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are <u>nodes in the clique!</u>

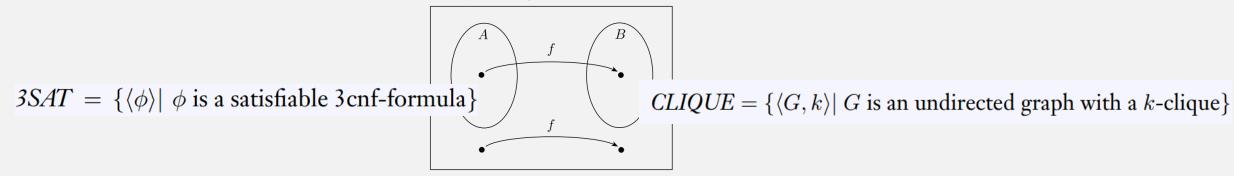


- Then for any assignment, some clause must have a contradiction with another clause
- Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique

Runs in **poly time**:

- # literals = O(n)# nodes
- # edges poly in # nodes

 $O(n^2)$



But this a single language reducing to another single language

NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

Must prove for <u>all</u> langs, not just a single language

1. *B* is in NP, and **easy**

 \rightarrow 2. every A in NP is polynomial time reducible to B.

hard????

It's very hard to prove the first NP-Complete problem!

(Just like figuring out the first undecidable problem was hard!)

But after we find one, then we use that problem to prove other problems NP-Complete!

THEOREM

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

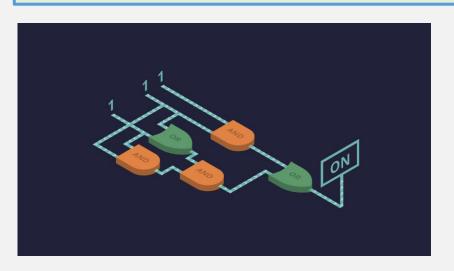
Next Time: The Cook-Levin Theorem

The first **NP**-Complete problem

THEOREM "

SAT is NP-complete.

But it makes sense that every problem can be reduced to it ...



Check-in Quiz 4/27

On gradescope