The Cook-Levin Theorem
(the 15t NP-Complete Problem)

Monday, May 2, 2022

%/{/{0&(/(0@/%@/{56’

« HW 11 out
* Due Tues 5/3 11:59pm EST

e 4 |ectures left!

« Course evals coming

Jeff Atwood &
AT @codinghorror
-

There are two hard things in computer science: cache
invalidation, naming things, and off-by-one errors.

last Time: NP-COmpleteness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reducible to B. hard????
single language

It's very hard to prove the first
NP-Complete problem!

(Just like figuring out the first

. undecidable problem was hard!)
But after we find one, then we use that problem

to prove other problems NP-Complete!
TH EOREM ..

It B is NP-complete and B <p C for C' in NP, then C' is NP-complete.

7oday: The Cook-Levin Theorem

The first NP-
Complete

problem
THEOREM -------------------

SAT is NP-complete. It makes sense that every problem

can be reduced to it ...

The Cook-Levin Theorem

The Complexity of Theorem-Proving Procedures

1971

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle 1is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the

Stephen A. Cook

University of Toronto

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles

Hard part

DEFINITION

SAT is NP-complete.

KPATKRHE COOBITEH T A

1973

VIHK 519.14

YHHUBEPCAJLHBIE 3AJTAYH MEPEROPA
o Ao Jdesun

B cratee PaccMATPHBAETCA HEeCHOIBRED H3IBECTHRIX MACCOBRIX 33789
«nepeﬁﬂpanro THOa® H O0KA3RBAETCH, YTO 3ITH .'ia,'],d'll.l MP‘}-]{II{] pPEllaTh JHlb
Jd Takoe BpeM#A, 3a RKOTOpOE MOMEHO pellaTh BOODINE AHWOBIE 347890 yHadaH-
HOI'0 THIIA.

Hocae YTOUHEeHHA NOHATHA AJATQPHTMA OELTIA AOEazaHa alropaTMHYeCEad Hepaape-
IMHMOCTL PAfJa KIaccHYecKHX MaccoBHIX npobieM (Hampumep, npolieM TossaecTBa ade-
MEHTOB TPYyO, roMeoMoppHocTH MHOTOODPa3dil, paspeuEMocT JAo(aHTOBHX YVpaBHeHRI
n gpyrax). Tes caMeiM DB CHAT BONPOC 0 HaXOEICHHH NPaKTHYecKoIo coocoda MX pe-
1IeHLH. U,’.T,,llal{n CyIIeCTBOBAHHE AITOpPHTMOEB [JId pelleHHA OPYVIHEX 3aja4d He CHEMaeT
JJsH HMX aHalorHYHOro BOUpOCca W3-3a aHTacTHIeckH odemoro ofbema paboTH, mpemmi-
CRIBACMOI0 9THMH AJArOpPHTMAME. Tarora CATYalUlld ¢ TAK HajblBaeMBIMH ﬂ{?[.lt"jﬂpﬂhlllﬂ Ja-
AagaMi: MUHHMHEzANEE Oyaessix Py, moMcka 0KA3aTEALCTB OrpAHHYCHHOR NAHHLL
BhIfCHeHH HEGMDP(i!H{)t}TL! rpaqma H IpYIrHMH, Bee atH 3amaun pPelllaTCH TPHBHAIbHBIMIL
ANTOPHTMAME, COCTOALIMME B [[L‘pl.‘ﬁl]]'_lE BCeX BOaMOEHOCTeH. OHARO 2TH AJATOPHTME Tpe-
ﬁ}'m’l‘ SECHOHEHIHAILHOT O BpeMEeHH]]EfrCITI:l H ¥ MATCMATHROB CO0AILIOCH }'ﬁi.‘}li,l PHHE, 4T

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP. and
——> 2. every A in NP is polynomial time reducible to B!’

Reducing every NP language to SAT

Some NP lang = {w | wis 7?7} SAT = {{¢)| ¢ is a satishable Boolean formula}

How can we reduce some w to a Boolean
formula if we don’t know w???

Proving theorems about an entire class of langs?

We can still use general facts about the languages!

Eg. “Prove that every regular language iIs in P”

« Even though we don’t know what the language is .
« We do know that every regular lang has an DFA accepting it

Eg, “Prove that every CFL decidable”
« Even though we don’t know what the language is ...
« We do know that every CFL has a CFG representation ...
« And every CFG has a Chomsky Normal Form

What do we know about NP languages?

They are:

1. Verified by a deterministic poly time verifier

2. Decided by a nondeterministic poly time decider (NTM)

Let’s use this one

Flaskback NON-deterministic TMs

« Formally defined with states, transitions, alphabet ...

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo. Gaccept; Greject), Where
Q, X, I are all finite sets and
1. @ is the set of states,
. X 1s the input alphabet not containing the blank symbol .,
. I is the tape alphabet, where u € I"'and X C T,
L0:Q xT'—P(Q x T x {L,R}) transition function,
. go € (@ 1s the start state,
. Qaccepr € @ 1s the accept state, and

] N W W N

« Qreject € @ 1 the reject state, where grejece 7 Gaceept-

« Computation can branch
« Each node in the tree represents a TM configuration

(
()

: f
101 1q701111

reject e ¢

B

- accept

thstback: TM Config = State + Head + Tape

q7
101151111uuu§...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position

Flaskback NON-deterministic TMs

« Formally defined with states, transitions, alphabet ...

Idea: We don’t know the A Turing machine is a 7-tuple, (Q, 2,1, 9, qo. Gaccept; Greject), Where

. e . Q, X, I are all finite sets and
specific language or strings

in the language’ but ... 1. @ is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,
y 3. I' is the tape alphabet, where v € I'and X C T, (')
... we know those strings 4.6: Q xI'—P(Q x T x {L., R}) transition function, N Y
must have an accepting 5. qo € Q is the start state, (D' \,
sequence of configurations! 6. Gaccepe € Q is the accept state, and e
7. Greject € @ 1s the reject state, where Greject 7 Gaccept- 101 1(_;7011 11

reject e ¢

« Computation can branch ;-
« Each node in the tree represents a TM configuration Y

° () ° L) ° ° ’ ﬂCC‘-ept
 Transitions specify valid configuration sequences
q10000 == ug2000 mm) Lxq300 =) ux0g40 - — UXXXUaccept

Accepting config sequence = “Tableau”

|go|wylws| ... |wylu| ... |u|# | start configuration ° |nput W = W1 Wn

| second configuration

« Assume configs start/end with #

nk

« Must have an accepting config

« At most nk configs
* (why?)

| n¥th configuration

nk

« Each config has length n*
* (why?)

Theorem: SAT is NP-complete

Proof Idea:
 Give an algorithm that reduces accepting tableaus to satisfiable formulas

« Thus every string in the NP lang will be mapped to a sat. formula

 and vice versa . .
Resulting formulas will have four

components:
¢C€H /\ ¢start A ¢m0ve /\ ¢accept

Tableau Terminology

A tableau cell has coordinate i;

* A cell has symbol:
seC=QUT U{#}

A # |qo |wqlwo

w

cell

¥ #

-
-

nk

start configuration

second configuration

n*th configuration

A Turing machine is a 7-tuple, (Q,X,T, 0, o, Gaccept, Greject), Where
Q, X, I are all finite sets and

I'=Q is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,

3.#F is the tape alphabet. whereu e "'and ¥ C T,
40: QxI'—P(@Qx T X {L R})e transition function,

5. qp € @ 1s the start state,
6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-

A #|qo|wylwe| ... |Wy, u| ... | u|# | start configuration

second configuration

Formula Variables

A tableau cell has coordinate i,j » \
Resulting formulas will have four |y

components:

A cell has sym bol: ¢cell A ¢start A quove A Cbaccept
SEC=QUFU{#} T T T]

Use these variables to create @cell A Pstart /\ Pmove /\ Paccepe SUCh that: |
accepting tableau < satisfying assignment

- T K -

* For every ijs create variable x;; ~ [Sfinput is accepting tableau,
* i.e, one var for every possible o g marl then output satisfiable ¢:
Symbo[/ce[[combination » < all four parts of ¢ must be TRUE

1. Qisthe § < |f input is non-accepting tableau,
2. ¥istheil then output unsatisfiable ¢:

: — 3. l'isthe ti « only one part of ¢ must be FALSE
* To—tal Varlables - 40: Q@ X ' =rreg == A1 IN[Je transition function,
e cells* # sym bols = 5. gy € Q is the start state,
o pnk* pk* |C| — 0(n2k) 6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-

w,] U [#] start configu = accepting tableau: all four must be TRUE
41| sccond configuestion - & nonaccepting tableau: one must be FALSE
I qbcell A ¢start A\ ¢move A\ ¢accept
f
./_———\\.
h configu

been = /\ {(\/ x’i,j,s) A (A (%,j,s\/iﬁi,j,t))]

1<4,5<nk seC s,teC
/ N’f—@uw{#}s#\
“The following “The variable And only one
must be TRUE for one s must variable for some
for every cell ij” be TRUE” s must be TRUE

l.e., every cell
has a valid
character

= Does an accepting tableau correspond to a satisfiable (sub)formula?
= TRUE if it's in the tableau,

* Yes, assign x;
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

* Not necessarily

191

wiwd .. fogu] ... Ju]#] surcconfiguration = accepting 'gableau: all four must be TRUE
I} second configurarion P |Z[< nonaccepting tableau: one must be FALSE
qbcell A ¢start A\ ¢move A\ ¢accept
f
— T
h configu

pam— For a string w, start config
Is always #qw; ... w,, ... #

The variables in /Cbstart = mlalafﬁéqo/\ \
the start config,

x N x N.o..N\Nx A\
ANDed together 1,3,w1 /A 1,4,w3 1,n4+2,wn

L1 n+3,u ANAVA\ L1, nk—1,0 A\ L1 nk # -
l.e., tableau has

valid start config

= Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;; = TRUE if it's in the tableau,
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily

192

= accepting tableau: all four must be TRUE

| second configuration [— nonaCCGDtinQ tableaUI One must be FALSE

M M
qbcell A ¢start A\ quove

— T
The state q,cep
Paccept = \/ Li,j,qaccepr<——{ MUSt appear in
1<i,j<nk some cell I

l.e., tableau has
valid accept config

= Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;; = TRUE if it's in the tableau,
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?
* Yes, because it wont have g,

193

g0 [wi[wa] . Jw[u] .. [u]#] starconfiguration = accepting 'gableau: all four must be TRUE
| second configurion & nonaccepting tableau: one must be FALSE[V]

! M M
e e Geell N Pstart N\ |Pmove |\ ¢accl:zel‘:pt

—_— S

* Ensures that e configuration Is legal according to the
previous configuratien and the TM’s 6 transitions

« Only need to verify every 2x3 “window”

« Why?

« Because Iin one step, only the cell at the head can change
° Eg, if 5(q17b) — {(QQ,C,L),(QQ,B.,R)}

- Which are legal? ToTs T 72?

(a) (b) —— © L
gzl alc aj|aljaqgs alal|b
| b | a alb]| a b
(d) (e) (f)
| bl a a|b|ge c

| n*th configuration

-— e —_—

e, all
transitions are
legal, according

toSfn

1<i<nk, 1<j<nk

= accepting tableau: all four must be TRUE
& nonaccepting tableau: one must be FALSE[V]

! M M
Peell N Pstart /\/\ ¢acc|:zelzpt

Do = /\ (the (7, 7)-window is legal) ij = upper

center cell

\/ (26,591,010 N Tigiaz N Tigatas A Lidd,j—1,a0 N Titlj,as N ikl j+1,a5)

ay,...,a6
is a legal window

= Does an accepting tableau correspond to a satisfiable (sub)formula?

* Yes, assign x
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

= TRUE if it's in the tableau,

Lj,s

* Not necessarily

Pmove = /\ (the (i, j)-window is legal) | ij=upper

1<i<nk, 1<j<nk

= accepting tableau: all four must be TRUE E[
& nonaccepting tableau: one must be FALSE[V]

M M M
Peell N\ Pstart /\ Pmove /\ ¢acclzze[':pt

center cell

\/ (26,591,010 N Tigiaz N Tigatas A Lidd,j—1,a0 N Titlj,as N ikl j+1,a5)

ay,...,a6
is a legal window

= Does an accepting tableau correspond to a satisfiable (sub)formula?

* Yes, assign x
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

Lj,s

* Not necessarily

= TRUE if it's in the tableau,

To Show Poly Time Mapping Reducibility ...

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— ¥* exists, where for every
w,

w e A<= f(w) € B.

The function f is called the polynomial time reduction ot A to B.

To show poly time mapping reducibility:
M| 1. create computable fn,
m)2. show that it runs in poly time,
| 3. then show forward direction of mapping red.,
4. and reverse direction
| (or contrapositive of reverse direction)

Time complexity of the reduction

* Number of cells = 0(n?k)

Geell = /\ [(\/ il?'i,j,s) A (/\ (:Ci,j,s\/a?i,j,t))] 0(n?k)

1<4,5<nk seC s,teC
s#t
“The following “The variable And only one
must be TRUE for one s must variable for some

for every cell ij” be TRUE” s must be TRUE

Time complexity of the reduction

* Number of cells = 0(n?k)

Peell = /\ [(\/ 5Ui,j,s) A (/\ (Zi s Va?i,j,t))] 0(n?¥)

1<4,5<nk seC s,teC
s#t

(bstart = X1,1,# A ml:QaQO/\

The variables in T1,3,w1 N T1,4,w0 N oo ANT1n+2,w0, "N O(n*)
the start config,
ANDed together

T1n+3,0 N NTL k1 NI ks

Time complexity of the reduction

* Number of cells = 0(n?k)

Peell = /\ [(\/ CUz',j,s) A (/\ (Zi s Va?i,j,t))] 0(n?¥)

1<¢,5<nk seC s,teC

s#t

Cbstart = X1,1,# A ml:QaQO/\

k
1,301 A T1 a0, A« A T1ntow, A | O0F)
T1n+3u N A T1 pk—1,0 A L1k #
B The state accept 0(n2k
Paccept = \/ L4, 5, Gaceept must appear in (n**)

1<4,5<nk some cell

Time complexity of the reduction

* Number of cells = 0(n?k)

Peell = /\ [(\/ CUz',j,s) A (/\ (Zi s Vﬂ?i,j,t))] 0(n?¥)

1<¢,5<nk seC s,teC
s#t
Ostart = L1148 N\ T1,2,q0/\
k

13,0, A T1dws Ao AT nt2.w, A | O0Y)

T1n+30 N NTL k1 NI ks

_ 2k
§baccept — \/ L,5, Gaceept O(n*")

1<4,j<nk

Brmove = /\ (the (4, 7)-window is legal) 0(n?¥)

1<i<nk, 1<j<nk

Total:
0(n2k)

Time complexity of the reduction

* Number of cells = 0(n?k)

Peell = /\ [(\/ CUz',j,s) A (/\ (Zi s Va?i,j,t))] 0(n?¥)

1<4,5<nk seC s,teC
s#t

Ostart = L1148 N\ T1,2,q0/\
k
T13,w AN Tldwy Ao AT1nt2.w, A O(Y)

T1n+3,0 N NTL k1 NI ks

gbaccept — \/ L4, 5, Gaccept O(HZk)
1<i,j<nk
Brmove = /\ (the (4, 7)-window is legal) 0(n?¥)

1<i<nk, 1<j<nk

To Show Poly Time Mapping Reducibility ...

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— ¥* exists, where for every
w,

w e A<= f(w) € B.

The function f is called the polynomial time reduction ot A to B.

To show poly time mapping reducibility:
M| 1. create computable fn,
| 2. show that it runs in poly time,
| 3. then show forward direction of mapping red.,
4. and reverse direction
| (or contrapositive of forward direction)

QED: SAT 1s NP-complete

A language B is NP-complete if it satisfies two conditions:

[V]1. Bisin NP, and
[V] 2. every A in NP is polynomial time reducible to B.

Now it will be much easier to prove that
other languages are NP-complete!

THEOREM rwreeresssssnnes known | UNKNOWN | eeeraeeeseseessensseessmns

Key Thm: 1f B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

To use this theorem,
C must be in NP

P rOOf: DEFINITION
° N e e d to S h O W: C iS NI‘ - CO m p lete: A lzing;aiinBl\Ti;]\;i:;omplete if it satisfies two conditions:
° it's i N NP <g|ve N), an d 2. every A in NP is polynomial time reducible to B.

» every lang 4 in NP reduces to Cin poly time (must show)

* For every language A in NP, reduce A - C by:
* First reduce 4 2 /Bin poly time

If you're not Stephen Cook

« Can do this because B is NP-Complete or Leonid Levin, use this
* Then reduce B > Cin poly time theorem to prove a
. This is given language is NP-complete

 Total run time: Poly time + poly time = poly time

THEOREM --

Usin g: It B is NP-complete and|B <p C'|for C'in NP, then|C' is NP-complete.

3 steps to prove a language|C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,
4. and reverse direction

(or contrapositive of reverse direction)

THEOREM ..

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then|C' is NP-complete.

3 steps to prove a language C is NP-complete:
1. Show Cisin NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove|3SAT is NP-Complete:
1. Show 3SATis in NP

214

Fasktack SSAT is in NP
BSAT = {(¢)| ¢ is a satisfiable Boolean formula}

Let n = the number of variables in the formula

Verifier:

On input <¢, c>, where c is a possible assignment of variables in ¢ to values:
« Accept if ¢ satisfies ¢

Running Time: O(n)

Non-deterministic Decider: - b
On input <¢>, where ¢ is a boolean formula:

« Non-deterministically try all possible assignments in parallel

« Accept if any satisfy ¢ |

TQu_nning Time: Checking each assignment takes time O(n)

THEOREM --

U Si [g: It|B 1s NP-complete and|B <p C'|for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:

1. Show Cisin NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove 3SAT is NP-Complete:
vl 1. Show 3SAT is in NP
V] 2.. Choose B, the NP-complete problem to reduce from: SAT
3.| Show a poly time mapping reduction from SAT to 3SAT

216

thstback: SAT 1S Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formula} « * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}
f
./’_—__—_\\.

Need: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVayVasVay) © (@1 VayVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... easy for formula
conversion: each
step is already a

known “law”

THEOREM ..

U Si [g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:

1. Show Cisin NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example: Each NP-complete problem
Let C = 3SAT, to prove 3SAT is NP-Complete: we prove makes it easier to
1. Show 3SATis in NP prove the next one!

M2. Choose B, the NP-complete problem to reduce from: SAT
13. Show a poly time mapping reduction from SAT to 3SAT

218

THEOREM --

MNext [ine:1f B is NP-complete and B <p C for C in NP, then C is NP-complete.

3 steps to prove a language i1s NP-complete:

1. Show Cisin NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
?1. Show 3SAT-CLIQUE is in NP
?2. Choose B, the NP-complete problem to reduce from; SAT-3SAT
?3. Show a poly time mapping reduction from Bto C

219

Check-in Quiz 5/2

On gradescope

