More NP-Complete Problems

Wednesday, May 4, 2022

IT HAS BEEN SHOWN THAT I PROPOSE A COROLLARY ALL NP-HARD PROBLEMS IF YOU HAVE A STUPID ARE THE SAME. IF YOU'VE SOLUTION TO ONE SOLVED ONE, YOU'VE NP-HARD PROBLEM SOLVED THEM ALL. IT STUPIDLY SOLVES THEM ALL I CALL THIS A "SULLOOSHUN"

FOR INSTANCE, THE TRAVELING SALESMAN HAS TO VISIT A LOT OF CITIES, ONCE EACH,

WELL, IF YOU COLLAPSE

IF YOU COLLAPSE THE UNIVERSE, EVERYTHING IS THE SAME SIZE, AND ANYWAY, WHY BOTHER

CONSIDER THE HALTING PROBLEM. IS THERE A GENERAL WAY TO TELL IF TIME DOESN'T EXIST. A PROGRAM WITH A GIVEN THE PROGRAM CAN'T

Announcements

- HW 11 in
 - Due Tues 5/3 11:59pm EST
- HW 12 out tomorrow
 - Due Wed 5/11 11:59pm EST
 - Last HW!
- 3 lectures left!
- Course evals next week

Last Time: NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

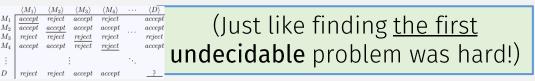
Must prove for <u>all</u> langs, not just a single language

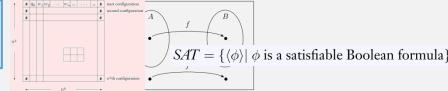
- **1.** *B* is in NP, and
- \rightarrow 2. every A in NP is polynomial time reducible to B.

It's difficult to prove the first NP-complete problem!

THEOREM

SAT is NP-complete.





But each NP-complete problem we prove makes it easier to prove the next one!

THEOREM known known Last Time: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

If you're not Stephen Cook or Leonid Levin, use this theorem to prove a language is NP-complete

Last Time: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose *B,* the known **NP**-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

Last Time: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let *C* = *3SAT*, to prove *3SAT* is **NP**-Complete:

1. Show *3SAT* is in **NP**

Last Time: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

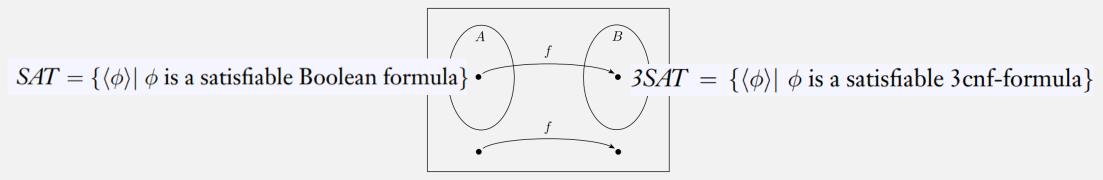
Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show *3SAT* is in **NP**
- - 3. Show a poly time mapping reduction from SAT to 3SAT

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

Flashback: SAT is Poly Time Reducible to 3SAT



<u>Need</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

1. Convert ϕ to CNF (an AND of OR clauses)

Remaining step: show iff relation holds ...

a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(n)$$

b) Distribute ORs to get ANDs outside of parens

$$(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R)) \bigcirc O(n)$$

2. Convert to 3CNF by adding new variables

$$(a_1 \lor a_2 \lor a_3 \lor a_4) \Leftrightarrow (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4) \bigcirc 0(n)$$

... easy for formula conversion: each step is already a known "law"

Last Time: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Theorem: 3SAT is NP-complete

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- \mathbf{V} 3. Show a poly time mapping reduction from SAT to 3SAT

Now have 2 known NP-Complete languages to use:

- SAT
- *3SAT*

Last Time: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

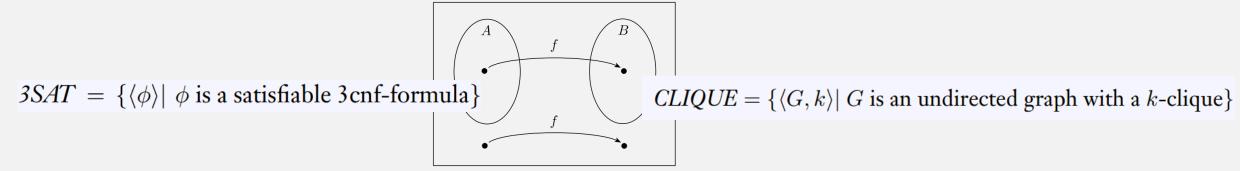
Theorem: CLIQUE is NP-complete

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete:

- ?1. Show 3SAT CLIQUE is in NP
- ?2. Choose B, the NP-complete problem to reduce from SAT-3SAT
- ?3. Show a poly time mapping reduction from B to C

Flashback:

3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

Example: $\phi = (x_1 \vee x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

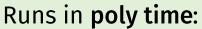
 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - Those are nodes in the clique!
 - E.g., $x_1 = 0$, $x_2 = 1$

 \Leftarrow If $\phi \notin 3SAT$

Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique



- # literals = O(n)# nodes
- # edges poly in # nodes $O(n^2)$

Last Time: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Theorem: *CLIQUE* is NP-complete

Let $C = \frac{3SAT}{CLIQUE}$, to prove $\frac{3SAT}{CLIQUE}$ is NP-Complete

- ✓ 1. Show 3SAT-CLIQUE is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT-3SAT
- $\overline{\mathbf{V}}$ 3. Show a poly time mapping reduction from B to C

Now have 3 known **NP**-Complete languages to use:

- SAT
- *3SAT*
- CLIQUE

NP-Complete problems, so far

- $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduced 3SAT to CLIQUE)

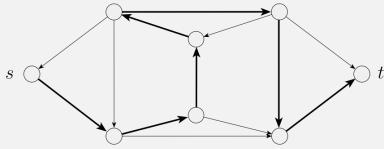
We now have <u>3 options to choose from</u> when proving the <u>next</u> **NP**-complete problem

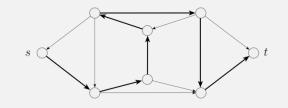
Flashback: The HAMPATH Problem

 $\begin{array}{ll} \textit{HAMPATH} &= \{\langle G, s, t \rangle | \ G \ \text{is a directed graph} \\ & \text{with a Hamiltonian path from} \ s \ \text{to} \ t \} \\ \end{array}$

• A Hamiltonian path goes through <u>every</u> node in the graph

- Exponential time (brute force) algorithm:
 - Check all possible paths of length n
 - See if any connects s and t: $O(n!) = O(2^n)$
- Polynomial time algorithm:
 - Unknown!!!
- The Verification problem:
 - Still $O(n^2)$, just like *PATH*!
- So HAMPATH is in NP but not known to be in P





 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ☑1. Show HAMPATH is in NP (left as exercise)
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
 - 3. Show a poly time mapping reduction from B to HAMPATH

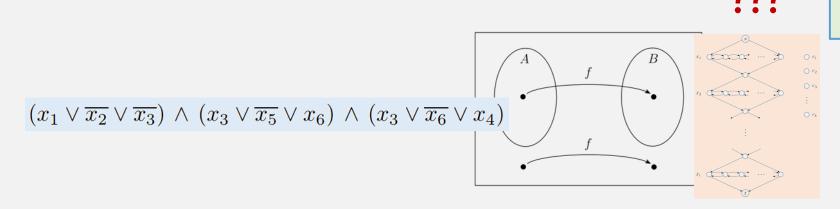
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

To prove *HAMPATH* is **NP**-complete:

- **☑1.** Show *HAMPATH* is in **NP** (left as exercise)
- \square 2. Choose B, the NP-complete problem to reduce from 3SAT
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

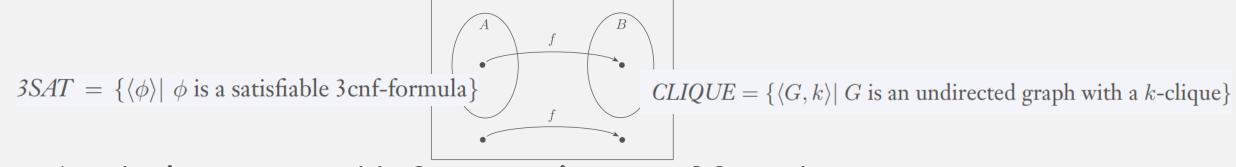
To show poly time <u>mapping reducibility</u>: 1. create computable fn,

- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)



Flashback:

3SAT is polynomial time reducible to CLIQUE.



Need: poly time computable fn converting a 3cnf-formula ...

table fn converting a 3cnf-formula ... Example: $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

• ... to a graph containing a clique:

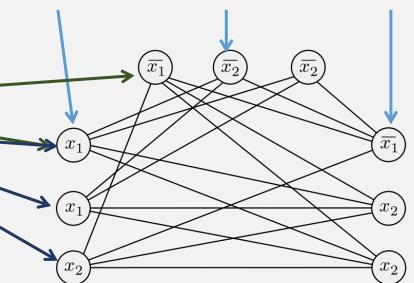
• Each clause maps to a group of 3 nodes

• Connect all nodes except:

Contradictory nodes

Nodes in the same group

Do conversion piece by piece ...



General Strategy: Reducing from 3SAT

Create a computable function mapping formula to "gadgets":

- Variable → "gadget", e.g.,
- Clause \rightarrow "gadget", e.g., $\overline{x_1}$ $\overline{x_2}$ $\overline{x_2}$ Gadget is typically "used" in two "opposite" ways:
 - 1. "something" when var is assigned TRUE, or
 - 2. "something else" when var is assigned FALSE

NOTE: "gadgets" are not always graphs; depends on the problem

Then connect variable and clause "gadgets" together:

- Literal x_i in clause $c_j \rightarrow \text{gadget } x_i$ "connects to" gadget c_j
- Literal $\overline{x_i}$ in clause $c_i \rightarrow \text{gadget } x_i$ "connects to" gadget c_i
- E.g., connect each node to node not in clause

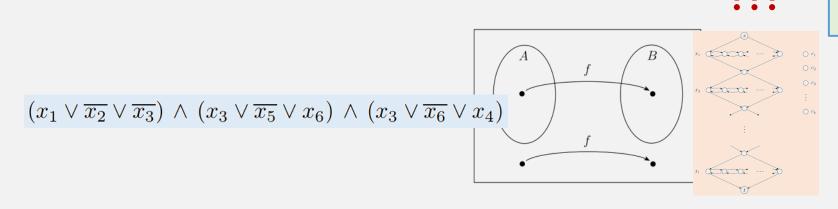
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

To prove *HAMPATH* is **NP**-complete:

- **☑1.** Show *HAMPATH* is in **NP** (in HW9)
- \square 2. Choose B, the NP-complete problem to reduce from 3SAT
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time <u>mapping reducibility</u>: 1. create computable fn,

- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)



<u>Computable Fn</u>: Formula (blue) → Graph (orange)

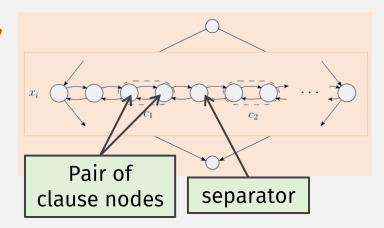
clause

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

• Clause \rightarrow (extra) single nodes, Total = k

variable

- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"



(extra)

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

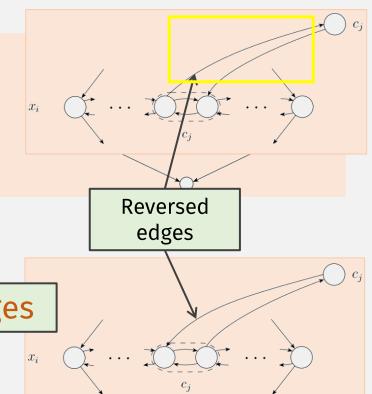
- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

Literal = variable or negated variable

• Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i

Each extra c_i node has 6 edges

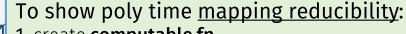
• Lit $\overline{x_i}$ in clause $c_i \rightarrow c_j$ edges in gadget x_i (rev)



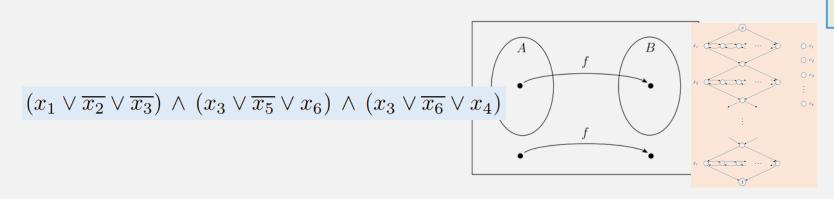
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH



- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

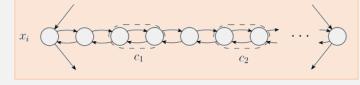


Polynomial Time?

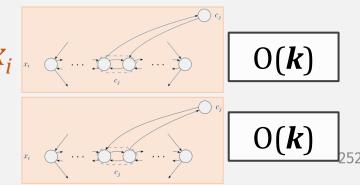
<u>ΓΟΤΑL</u>: Ο(**k**²)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses = at most 3k variables

- Clause \rightarrow (extra) single nodes \bigcirc \circ_i O(k)
- Variable \rightarrow diamond-shaped graph "gadget" $O(k^2)$
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"



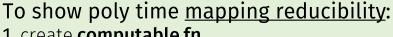
- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_j \rightarrow c_j$ edges in gadget x_i (rev)



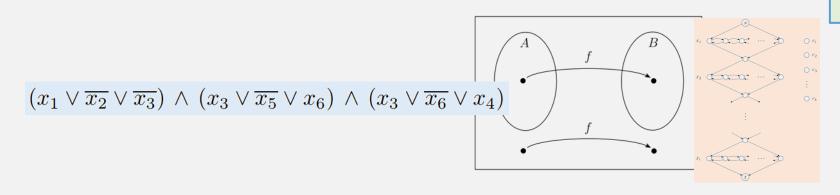
 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

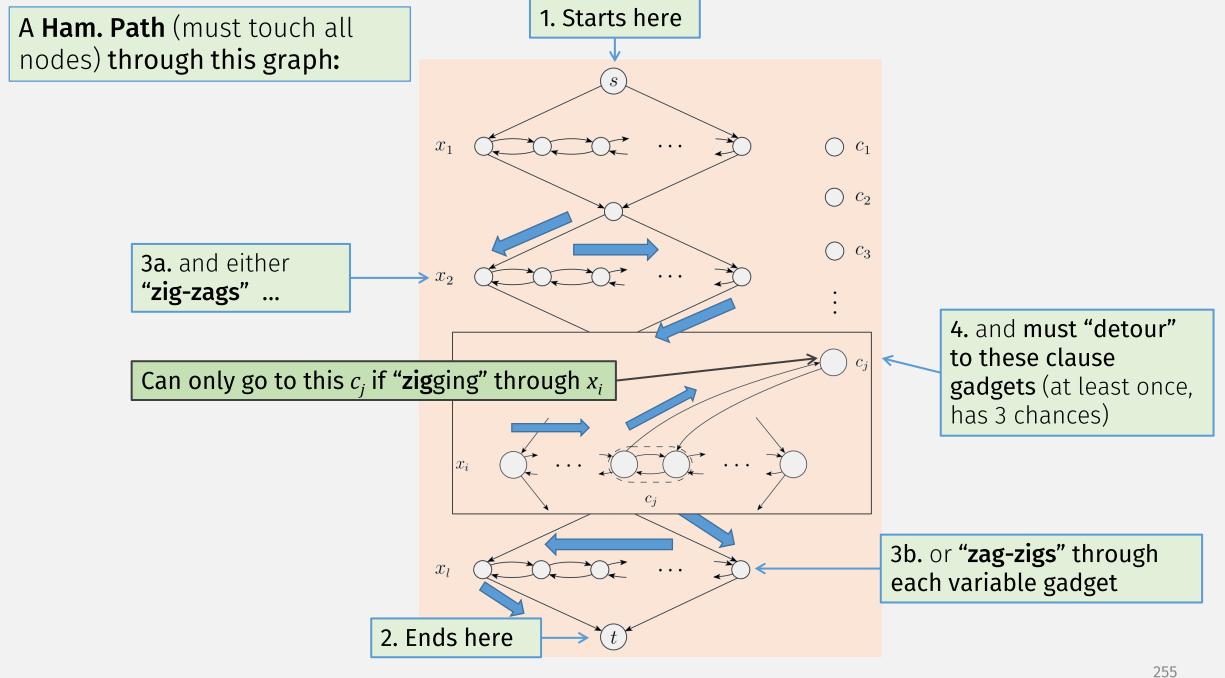
To prove *HAMPATH* is **NP**-complete:

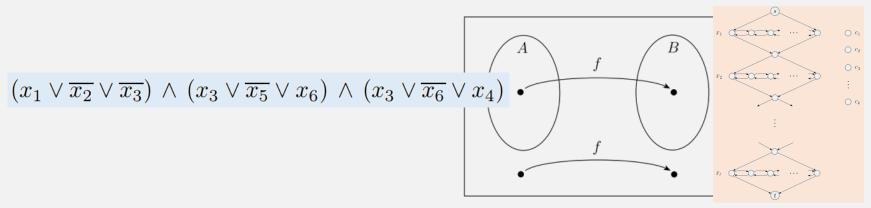
- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose B, the NP-complete problem to reduce from 3SAT
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH



- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)







Want: Satisfiable 3cnf formula \Leftrightarrow graph with Hamiltonian path

⇒ If there is satisfying assignment, then Hamiltonian path exists

These hit all nodes except extra c_j s

 $x_i = \text{TRUE} \rightarrow \text{Hampath "zig-zags" gadget } x_i$

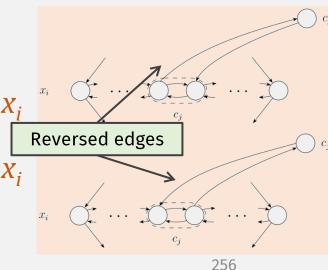
 $x_i = \text{FALSE} \rightarrow \text{Hampath "zag-zigs" gadget } x_i$

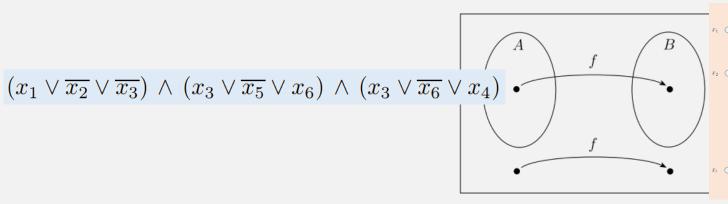
- Lit x_i makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i
- Lit $\overline{x_i}$ makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i

Now path goes through every node

Every clause must be TRUE so path hits all c_i nodes

• And edge directions align with TRUE/FALSE assignments



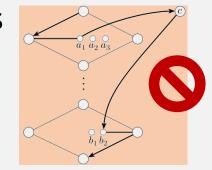


Summary: the only possible Ham. <u>path</u> is the one that corresponds to the satisfying assignment (described on prev slide)

Want: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

if output has Ham. path, then input had Satisfying assignment

- A Hamiltonian path must choose to either zig-zag or zag-zig gadgets Ham path can only hit "detour" c_i nodes by coming right back
- Otherwise, it will miss some nodes



gadget x_i "detours" from left to right $\rightarrow x_i = \text{TRUE}$

gadget x_i "detours" from right to left $\rightarrow x_i = \text{FALSE}$

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

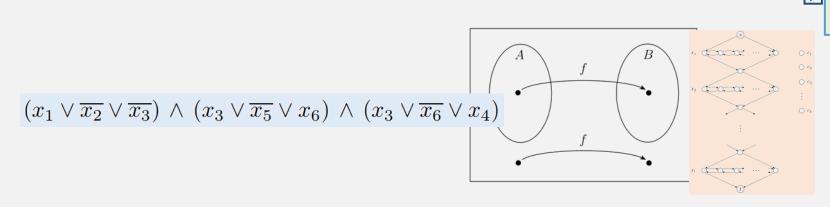
To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ☑3. Show a poly time mapping reduction from *3SAT* to *HAMPATH*

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
 - 2. show that it runs in poly time,
 - **3.** then show **forward direction** of mapping red.,
 - 4. and reverse direction

(or contrapositive of reverse direction)



 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show UHAMPATH is in NP
- 2. Choose the **NP**-complete problem to reduce from *HAMPATH*
 - 3. Show a poly time mapping reduction from ??? to UHAMPATH

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show *UHAMPATH* is in **NP**
- ☑ 2. Choose the NP-complete problem to reduce from HAMPATH
- → 3. Show a poly time mapping reduction from *HAMPATH* to *UHAMPATH*

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

Naïve Idea: Make all directed edges undirected?

But we would create some paths that didn't exist before

Doesn't work!

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

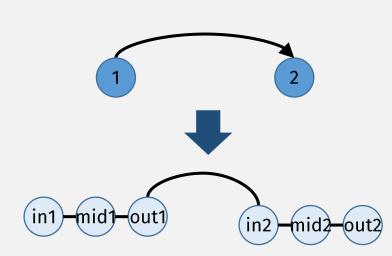
"out" edge

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

Better Idea:

- Distinguish "in" vs "out" edges
- Nodes (directed) → 3 Nodes (undirected): in/mid/out
 - Connect in/mid/out with edges
 - Directed edge $(u, v) \rightarrow (u_{\text{out}}, v_{\text{in}})$
- Except: $s \rightarrow s_{\text{out}}$, $t \rightarrow t_{\text{in}}$ only!



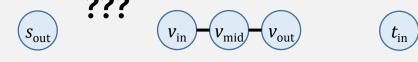
"in" edge

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

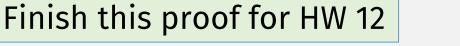
with a Hamiltonian path from s to t}

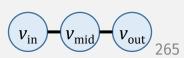
Need: Computable function from HAMPATH to UHAMPATH

- \Rightarrow If there is a directed path from s to t ...
- ... then there must be an undirected path
- Because ...

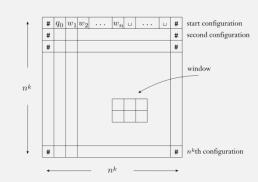


- \Leftarrow If there is <u>no</u> directed path from s to t ...
- ... then there is no undirected path ...
- Because ...

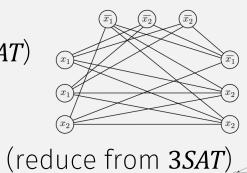




NP-Complete problems, so far



- $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce from SAT)



- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$
- $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$
- $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ with a Hamiltonian path from s to $t\}$

(reduce from 3SAT)

Quiz 5/4