More More NP-Complete Problems
Monday, May 9, 2022

BRUTE -FORCE DyNAMIC

SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
0(n) ALGORITHMS: O(r)
) O (n*2")

STILL WORKING
ON YOUR ROUTE?
\

~
SHUT THE
HEW UP

%/{/{0«/{0@#(@/{13’

« HW 11 in
—Dbue-TFues 5/ 3-1:59pm-EST

 HW 12 out
« Due Wed 5/1111:59pm EST
e Last HW!

e Last week: 2 lectures left!

» Course evals today

NP-Complete problems, so far - =

-— nk —

SAT = {{(@)| ¢ is a satisfiable Boolean formula} (Cook-Levin Theorem)

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} (reduce from SAT)

CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduce from 3s4T) =

o HAMPATH = {(G,s,t)| G is a directed graph (reduce from 3SAT)

with a Hamiltonian path from s to ¢}

UHAMPATH = {(G,s,t)| G is a airected graph (HW 12)
with a Hamiltonian path from s to t}

7ody: MOre NP-Complete problems

o SUBSET-SUM = {(S,t)| S ={x1,...,2zr}, and for some
{yi,...,y1} € {z1,..., 21}, we have Xy; =t}

® (reduce from 3SAT)

* VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {«1, ..., x1}, and for some
{y1,--., u}t C{x,..., x}, we have Xy; = t}
= .5
o £

272

THEOREM --

Usin g: It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language is NP-complete:
1. Show Cis in NP

2. Choose B, the known NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM 1s in NP

v] 2. Choose the NP-complete problem to reduce from: 3SAT
3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

(or contrapositive of reverse direction)

A B
)
(x1 VZZVT3) A (23 VTV x6) A (23 \/ﬁvm)@’“@s,t) S ={z1,...,zx}
f

—
. .

feview: Reducing from 3SAT

Create a computable function mapping formula to “gadgets”:

* Clause - some “gadget”,eg, O =«

, ; NOTE: “gadgets” are
» Variable - another “gadget”, e.g,, =

not always graphs

Gadget is typically used in two “opposite” ways, e.g:

* ZIG when var is assigned TRUE, or /‘ .

« ZAG when var is assigned FALSE C) @j
Then connect “gadgets” according to clause literals:
- Literal x; In clause ¢; > gadget x;“detours” to
- Literalx; in clause ¢; > gadget x; “reverse detours” to c,

% S R
) S 2)

y;and z; v i digit =1 || z: I+ digit = 1
i digit = 1 if ¢, has x, if ¢, hasx;
Computable Fn: 3cnf =2 (S.t) NLz2d
. -) p [T 0 0 0 0 0
z1711 0 0 O 0 0
Y2 1 0 O 0 0
E.S., |@NTahas) A (meVasv--)A - A@EV-- V..) mp 2 1 0 0 0 0
y 1 0 0 0
» Assume formula has: - 10 . 0 1
« Ivariables Z1,...,Z;
e kclauses c1,...,ck
. : : Y 110 0 0
Computable function f maps: " o o 0
« Variable x; 2 91 T 0 0
h g,and hy; 71 0 0
* Clause¢; -2 1 ridigine, 0
- Digits arranged as rows in a table ... 72 To help get X 0
. . 2 correct sum
 Each number has max I+k digits:
- Literal x; In clause ¢; 2>
- LiteralX;in clause ¢, 2> 9k 1
. hk 1
*Sum isl1sfollowed by k3s [Treeuml—"7 1T T T 1T - 15 5 o

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM 1s in NP
v] 2. Choose the NP-complete problem to reduce from: 3SAT

3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
V1| 1. create computable fn,
|:>2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction
(or contrapositive of reverse direction)

A B
)
(x1 VZZVT3) A (23 VTV x6) A (23 V%Vm)%&t) S ={z1,...,zx}
f

—
. .

Polynomial Time?

E.g., (1‘1 VE\/:L';;) A\ (1:2\/3;3\/...)/\ ..
« Assume formula has:

 Ivariables Z1,...,Z;
e kclauses ¢i1,...,Ck

« Table size: (I + k) *|(21 + 2k)

 Creating it requires constant
number of passes over the table

« Num variables I = at most 3k

e Total:

/\(—%v

O(k %)

2 3 4 [| g o Ck

Y1 0 0 O O(1 O 0
21 0 0 O 010 O 0
Ys 1 0 0 0|0 1 0
29 1 0 O O(1 O 0
23 1 0 0|0 O 1
Ui 1{0 0 0
VA 1 0 0 0
g1 1 0 0
hl 1 0 0
g2 1 0
hg 1 0
gk 1
hk 1
t 1 1 1 1{3 3 3

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM 1s in NP
v] 2. Choose the NP-complete problem to reduce from: 3SAT

3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
V1| 1. create computable fn,
[V]| 2. show that it runs in poly time,
:>3. then show forward direction of mapping red.,
4. and reverse direction
(or contrapositive of reverse direction)

A B
)
(x1 VZZVT3) A (23 VTV x6) A (23 V%Vm)%&t) S ={z1,...,zx}
f

—
. .

Each column:
- At least one 1
- At most 3 1s

¢ is a satisfiable 3cnf-formula < f({(¢)) = (5,t) where some subset of S bum]Lu r

= If formula is satisfiable ... AT oo oot o
« Sum ¢ = 11s followed by k 3s S %y - - - ;
» Choose for the subset ... omeofthese | 2| & 1 " oll 1
°yiifX,-:TRUE 23 1 0 00 O 1
 z If x, = FALSE
« and some of g. and h, to make the sum ¢) o o ;
e ... Then this subset of S must sum to ¢ bc: 2 Tandn: L0 0 0
- Left digits: 71 | helpgetthe (1 0 0
« onlyoneofy orzisins g, | LCOrTECt Sum 1 0
) Right digitS: "2 So each column : ’
« Top right: Each column sumsto 1,2, or 3 sum (for left
« Because each clause has 3 literals digits) is 1
« Bottom right: Ik l 1
« Can always use g, and/or h, to make column sum to 3 i L
t 1 1 1 1 --- 1|3 3 3

¢ is a satisfiable 3cnf-formula < f({(¢)) = (5,t) where some su

< |fa subset of S sumsto ...

The only way to do it is as prev described: .S?nc:y
« It can only include either y, or z, oy

. . Yi or z;
« Because each left digit column must sum to 1
« And no carrying is possible

* Also, since each right digit column must sum to 3:
« And only 2 can come from g.and h,
» Then for ever rig['ht column, some y. or z. in the subset
has a 1 in that column
e ... Then table must have been created from a sat. ¢:
« x,=TRUE ify, inthe subset
« x,=FALSE if z in the subset

 This Is satisfying because:

« Table was constructed so 1in column ¢, for
y. or zz-means that variable x, satisfies clause C;

« We already determined, for every right column,
some number in the subset has a 1in the column

e So all clauses are satisfied

Subset must have
some number with
1in each right
column

ot
1 2 3 4 l&l C2 Ck
i [T 0 0 0 0|YT 0 0
%zl 1 0 0 O 00 O 0
Yo 1 0 0 00 1 0
Z9 1 0 0 O 1 O 0
Y3 1 0 0|1 1 0
23 1 0 00 0 1
. 110 O 0
In each right 110 o 0
7| column, g, and h, T 0 0
can account for il 0 0
at most 2 1 0
hg 1 0
Because each
column sum (for
left digits) is 1
dk 1
hk ll 1
t |11 1 1 1 --- 13 3 3

More NP-Complete problems

V] SUBSET-SUM = {(S,t)| S = {x1,..., 21}, and for some
{yi,...,y1} € {z1,..., 21}, we have Xy; =t}

® (reduce from 3SAT)

* VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

A vertex cover of a graph is ...
* ... a subset of its nodes where every edge touches one of those nodes

286

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

A vertex cover of a graph is ...
* ... a subset of its nodes where every edge touches one of those nodes

Proof Sketch: Reduce 3SAT to VERTEX-COVER
* The reduction maps:

» Variable x; > 2 connected nodes
« corresponding to the var and its negation, e.g,,

* Clause - 3 connected nodes
« corresponding to its literals, e.g,

« Additionally,
« connect var and clause gadgets by ...
e ... connecting nodes that correspond to the same literal

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

¥

@ - Variable /@\ -
\/ | gadgets |

288

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

O = (581 \/.“171\/$2) N\ (:1:_1\/5\/@) N\ ($_1V372V$2)

(1)
Clause
gadgets

289

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

Extra edges
connecting
variable and
clause gadgets
together

290

dp=(x1VaxrVa) AN (TIVITIVT) A (TT VeV x)

VERTEX-COVER example D
If f Q—@
e |f formula has ... \

e m= H# variables

« I =# clauses .
e Then graph has ... o)

« ## nodes =2 X #vars + 3 x #clauses = 2m + 31
= |f satisfying assignment, then there is a k-cover, where k=m + 21

* Nodes in the cover are:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
« Total nodes in cover =m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

¢=(x1Vr1Va) AN (@IVT2VT2) A (T1VayV)
VERTEX-COVER example D

e |f formula has ...

e m = #t variables
Example:
e I = # clauses v = FALSE Cﬁi
=
* Then graph has ... |x,=TRUE YO H

* f nodes =2m + 31
= |f satisfying assignment, then there is a k-cover, where k=m + 21

* Nodes in the cover are:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
« Total nodes in cover =m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

dp=(x1VaxrVa) AN (TIVITIVT) A (TT VeV x)

VERTEX-COVER example B D
e |f formula has ...
« m = # variables
Example:
- I=# clauses X, = FALSE Cﬁ@
* Then graph has ... |x,=TRUE Y H

* # nodes =2m + 31
& If there isa k=m + 21 cover,

« Then i1t can only be a k-cover as described on the last slide ...
* 1 node (and only 1) from each, of “var” gadgets
» 2 nodes (and only 2) from each “clause” gadget
« Any other set of k nodes is not\a cover

» Which means that input has satisfying assignment:

EX-COVER = {(G, k)| G is an undirected graph that
* X = TRUE |f node X; |S |n cover, else X; = FALSE has a k-node vertex cover}

More NP-Complete problems

V] SUBSET-SUM = {(S,t)| S = {x1,..., 21}, and for some
{yi,...,y1} € {z1,..., 21}, we have Xy; =t}

® (reduce from 3SAT)

V] © VERTEX-COVER = {{G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Course Evaluations 5/9
(no quiz)

