More More NP-Complete Problems

Monday, May 9, 2022

Announcements

- HW 11 in
 - Due Tues 5/3 11:59pm EST
- HW 12 out
 - Due Wed 5/11 11:59pm EST
 - Last HW!
- Last week: 2 lectures left!
- Course evals today

NP-Complete problems, so far

- $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce from SAT)

- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduce from 3SAT).
- $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$
- $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ with a Hamiltonian path from s to $t\}$

(reduce from 3SAT)

(HW 12)

Today: More NP-Complete problems

- $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$
 - (reduce from 3*SAT*)
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from 3*SAT*)

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S,t\rangle | S=\{x_1,\ldots,x_k\}$, and for some $\{y_1,\ldots,y_l\}\subseteq \{x_1,\ldots,x_k\}$, we have $\Sigma y_i=t\}$

5000 gold	2500 gold	10 gold	2500 gold	2500 gold
25 KG 200 gold	20 KG 3000 gold	20 KG 500 gold	12.5 KG 100 gold	10 KG 10 gold
1	0	A	1	4
10 KG	7.5 KG	4 KG	1 KG	1 KG

THEOREM -----

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the known NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

3 steps to prove SUBSET-SUM is NP-complete:

- ☑ 1. Show SUBSET-SUM is in NP
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

Review: Reducing from 3SAT

Create a computable function mapping formula to "gadgets":

- Clause → some "gadget", e.g., %
- Variable → another "gadget", e.g.,
 Gadget is typically used in two "opposite" ways, e.g.:
 - ZIG when var is assigned TRUE, or
 - ZAG when var is assigned FALSE

Then connect "gadgets" according to clause literals:

- Literal x_i in clause $c_j \rightarrow \text{gadget } x_i$ "detours" to c_j
- Literal $\overline{x_i}$ in clause $c_j \rightarrow \text{gadget } x_i$ "reverse detours" to c_j

NOTE: "gadgets" are

not always graphs

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

3 steps to prove SUBSET-SUM is NP-complete:

- ✓ 1. Show SUBSET-SUM is in NP
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

- 1. create computable fn,
- **2.** show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of reverse direction)

Polynomial Time?

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots) \Longrightarrow$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Table size: $(l + k)^* (2l + 2k)$
 - Creating it requires constant number of passes over the table
 - Num variables *I* = at most 3*k*
- Total: $O(k^2)$

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0		0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
							•		•	
÷					••	÷	:		:	:
y_l						1	0	0		0
z_l						1	0	0		0
g_1							1	0		0
h_1							1	0		0
g_2								1	• • •	0
h_2								1	• • •	0
										.
:									••	:
g_k										1
h_k										1
\overline{t}	1	1	1	1		1	3	3		3

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

3 steps to prove SUBSET-SUM is NP-complete:

- ✓ 1. Show SUBSET-SUM is in NP
- ☑ 2. Choose the NP-complete problem to reduce from: 3SAT
 - 3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM
 - To show poly time <u>mapping reducibility</u>:
 - create computable fn,
 show that it runs in poly time,
 - 3. then show forward direction of mapping red.,
 - 4. and reverse direction(or contrapositive of reverse direction)

Each column:

- At least one 1
- At most 3 1s

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

s only

includes

one of these

- ⇒ If formula is satisfiable ...
- Sum t = 11s followed by k3s
- Choose for the subset ...
 - y_i if x_i = TRUE
 - z_i if x_i = FALSE
 - and some of g_i and h_i to make the sum t
- ... Then this subset of S must sum to t bc:
 - Left digits:
 - only one of y_i or z_i is in S
 - Right digits:
 - Top right: Each column sums to 1, 2, or 3
 - Because each clause has 3 literals
 - Bottom right:
 - Can always use g_i and/or h_i to make column sum to 3

Subset must have some number with 1 in each right column

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some sull

s only

includes

 y_i or z_i

 \Leftarrow If a subset of *S* sums to *t* ...

The <u>only way</u> to do it is as prev described:

- It can only include either y_i or z_i
 - Because each left digit column must sum to 1
 - And no carrying is possible
- Also, since each right digit column must sum to 3:
 - And only 2 can come from g_i and h_i
 - Then for every right column, some y_i or z_i in the subset has a 1 in that column
- ... Then table must have been created from a sat. ϕ :
 - $x_i = \text{TRUE if } y_i \text{ in the subset}$
 - $x_i = \text{FALSE if } z_i \text{ in the subset}$
- This is satisfying because:
 - Table was constructed so 1 in column c_i for y_i or z_i means that variable x_i satisfies clause c_i
 - We already determined, for every right column, some number in the subset has a 1 in the column
 - So all clauses are satisfied

More NP-Complete problems

- SUBSET- $SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some } \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t\}$
 - (reduce from 3SAT)
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from 3SAT)

Theorem: VERTEX-COVER is NP-complete

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}$

- A vertex cover of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes

Theorem: VERTEX-COVER is NP-complete

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

- A vertex cover of a graph is ...
 - ... a subset of its nodes where every edge touches one of those nodes

Proof Sketch: Reduce 3SAT to VERTEX-COVER

- The <u>reduction</u> maps:
- Variable $x_i \rightarrow 2$ connected nodes
 - corresponding to the var and its negation, e.g.,
- Clause → 3 connected nodes
 - corresponding to its literals, e.g.,
- Additionally,
 - connect var and clause gadgets by ...
 - ... connecting nodes that correspond to the same literal

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

 $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that }$ has a k-node vertex cover $\}$

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Extra edges connecting variable and clause gadgets together

- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - <u># nodes</u> = 2 × #vars + 3 × #clauses = <u>2**m** + 3**l**</u>

- Nodes in the cover are:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - Total nodes in cover = m + 21

- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l

Example: $x_1 = \text{FALSE}$ $x_2 = \text{TRUE}$

- \Rightarrow If satisfying assignment, then there is a k-cover, where k = m + 2l
- Nodes in the cover are:
 - In each of m var gadgets, <u>choose 1</u> node corresponding to TRUE literal
 - For each of *I* clause gadgets, ignore 1 TRUE literal and <u>choose other 2</u>
 - Since there is satisfying assignment, each clause has a TRUE literal
 - Total nodes in cover = m + 21

- If formula has ...
 - *m* = # variables
 - *I* = # clauses
- Then graph has ...
 - # nodes = 2m + 3l

Example:

 $x_1 = \text{FALSE}$ $x_2 = \text{TRUE}$

 $\Leftarrow \underline{\mathsf{lf}}$ there is a $k = m + 2l \mathsf{cover}$,

- Then it can only be a k-cover as described on the last slide ...
 - 1 node (and only 1) from each of "var" gadgets
 - 2 nodes (and only 2) from each "clause" gadget
 - Any other set of k nodes is not a cover
- Which means that input has satisfying assignment: $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that } \}$
 - x_i = TRUE if node x_i is in cover, else x_i = FALSE

has a k-node vertex cover}

More NP-Complete problems

- V
- SUBSET- $SUM = \{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - (reduce from 3*SAT*)

- \checkmark
- $VERTEX-COVER = \{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}$
 - (reduce from *3SAT*)

Course Evaluations 5/9 (no quiz)