Space ... and Beyond

Wednesday, May 11, 2022

FINAL REMAINING “FIRONTIERS"
ACCORDING TO POPULAR USAGE

%/{/{0«/{0@%@/{5&’

« HW 12 due tonight 11:59pm EST
* Last HW!

e Last lecture!

Previnsty: NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

These are the “hardest” problems (in NP) to solve

NP-Completeness vs NP-Hardness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
“NP-Hard” 2. every A in NP is polynomial time reducible to B.

“NP-Complete” = in NP + “NP-Hard”

So a language can be NP-hard but not NP-complete!

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HA LT\ 1s undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

 But A, Is undecidable and has no decider!

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALT 1w\ is undecidable
Proof, by contradiction:
« Assume HALTtm has decider R; use it to create decider for At :

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject. This means M loops on input w
3. If R accepts, simulate M on w until it halts.<—| This step always halts
4. If M has accepted, accept; if M has rejected, reject.”

thstback: The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALTxr i decidable | HALTmw is undecidable ... -
— Tm 15 Uncecl so it's definitely undecidable in a limited
Proof, by contradiction:

amount of steps, i.e, it's not in P or NP
« Assume HALTtm has decider R; use it to create decider for At :

“On input (M, w), an encoding of a TM M and a string w:
on input (M, w).

2. If R rejects, reject:
3. If R accepts, simulate M on w

« But A, Is undecidable!
* |.e, this decider that we just created cannot exist! So HALT 1\ is undecidable

The Halting Problem 1s NP-Hard

HALT vy = {(M,w)| M isa TM and M halts on input w}
Proof: Reduce 3SAT to the Halting Problem

(Why does this prove that the
Halting Problem is NP-hard?)

Because 3SAT is NP-complete!
(so every NP problem is poly
time reducible to 3SAT)

A B

(x1 VZZVT3) A (T3 VT Vag) A (T3 VT V 24)) " HALTTy = {{(M,w)| M isa TM and M halts on input w}

The Halting Problem 1s NP-Hard

HALT vy = {(M,w)| M isa TM and M halts on input w}

Computable function, from 3SAT — HALT,:
On input ¢, a formula in 3cnf:
e Construct TM M

M =on input ¢

e Try all assignments This loops when there is
: no satisfying assignment!
« If any satisfy ¢, then accept

« When all assignments have been tried, start over

= If ¢ has a satisfying assignment, then M halts on ¢
. Outp ut <M, ¢ > & If ¢ has no satisfying assignment, then M loops on ¢
Ve au

' f U HALT+tv = {(M,w)| M isa TM and M halts on input w}

—

Rev' eW DEFINITION

A language B is NP-complete if it satisfies two conditions:

mms) 1. Bisin NP, and

2. every A in NP is polynomial time reducible to B.

So a language can satisfy condition #2 but not condition #1

But can a language satisfy condition #1 but not condition #2?

) Yes, every language in P ... }

... unless P = NP

NP-Hard

NP-Complete

NP-Hard

P=NP
= NP-Complete

NP-Completeness vs NP-Hardness

NP-Complete

NP

P=NP
= NP-Complete

Complexity

Is there any problem definitely outside of here?

Space ...

Flaskback- Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba
« Store every partial string and their generating variables in a table

Substring
start char

We are gaining time ...

... by spending more space!

Substring end char

QO T 9 Qv T

vars for “b” vars for “ba”

“u_n

vars for “a

vars for “aa”

vars for “baa”

vars for “aab”

308

Space Complexity, Formally

TMs have a space
complexity

DEFINITION

Let M be a deterministic Turing machine that halts on all inputs. decider
The space complexity of M is the function f: N— N, where f(n)
is the maximum number of tape cells that M scans on any input ot
length n. It the space complexity ot M is f(n), we also say that M
runs in space f(n). _
It M is a'nondeterministic Turing machine wherein all branches

halt on all |1_ ——————————————

TMs have a space

Space Complexity Classes complexity

Languages are in a
space complexity class

DEFINITION

Let f: N—R™" be a function. The space complexity classes,
SPACE(f(n)) and NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

deterministic Turing machine}.

NSPACE(f(n)) = {L| L is a language decided by an O(f(n)) space

nondeterministic Turing machine}.

Compare:

Let t: N—R™ be a function. Define the time complexity class, _ . : :
TIME(t(n)), to be the collection of all languages that are decid- NTIME(t(m)) = {L| L is a language decided by an O(¢(n)) time

able by an O(t(n)) time Turing machine. nondeterministic Turing machine}.

Example: SAT Space Usage

SAT = {(¢)| ¢ is a satishiable Boolean formula}

20(m) exponential
time machine

My =¥On input (¢), where ¢ is a Boolean formula:
1. ~ For each truth assignment to the variables 1, ..., x,, of ¢:
2. Evaluate ¢ on that truth assignment. <—— Each loop iteration requires O(m) space
3. If ¢ ever evaluated to 1, accept; if not, reject.”

But the space is re-used on each loop!
(nothing is stored from the last loop)

So the entire machine only needs O(m) space!

SAT is in O(m) space complexity class!

Space is “more powerful” than time.

3N

Example: Nondeterministic Space Usage
ALLnea = {(A)| Aisan NFA and L(A) = ©*}

Nondeterministic decider for ALLypa ‘SerehFehe

IN = “On input (M), where M is an NFA: |

| Machine tracks
1. Place a marker on the start state of the NFA. “current” state(s) of NFA

: 2. Repeat 27 times, where g4s the number of states of M: !

. T PP : 1 an I
q states = 29 possible | _INondeterministically select an input symbol-and change the |[5.t each loop uses

combinations positions of the markers on M’ states to simulate reading | only 0(q) space!
(so exponential time) |

| that symbol.

| 4. Accept if stages 2 and 3 reveal some string that M rejects; that
Additionally, need is, if at some point none of the markers lie on accept states of |
a counter to count M. Otherwise, reject.”]
to 24 this requires —_——— —_—— — —_————

log (29) = q
extra space . . o . .
So the whole machine runs in (nondeterministic) linear O(q) space!

Facts About Time vs Space (for Deciders)

TIME — SPACE

« |f a decider runs In tiﬁ@ then its maximum space usage Is ...
* ...|lt(n)
e ... because it can add at most 1 tape cell per step

What about deterministic vs non-deterministic?
SPACE — TIME

 |f a decider runs in spacem then its maximum time usage is ...
* ... (IT] + QYW =24
e ... because that's the number of possible configurations
- (and a decider cannot repeat a configuration)

Flsttack: Deterministic vs Non-Det. Time

* If a non-deterministic TM runs in: t(n) time

* Then an equivalent deterministic TM runs in: 20(t(n))
« Exponentially slower

What about space?

Deterministic vs Non-Det. Space

THEOREM --
Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f*(n)).

* If a non-deterministic TM runs in: f(n) space

« Then an equivalent deterministic TM runs in: f?(n) space
« Expoenentially Only Quadratically slower!

Flasttack NOndet. TM = Deterministic TM

t(n) time 20(t(n))[time Nondeterministic
* Simulate NTM with Det. TM: ST bl
 Number the nodes at each step 1
« Deterministically check every tree path, f \
In breadth-first order v/*\v \
: 1 1 1,23 <lMax hfightth)
S (l ongest pa

e 1-1-1 t(n)
reject o \'

Max # of paths
b = branching per level

pt(n) —|20(t(n))

*|accept

thshsack: NOndet = Deterministic TM: Space

Always has input, 3 tapes
never changes:

— n space

0|/0[1]|0|u| ... Inputtape

Used to run each path (re-copy input
D v here for each path): t(n) space

x |x|#|0|1|x|u]| ... simulation tape
R

1(213(3[2(3|1|2|1|1]|3|u|... addresstape

Tracks which node we are on,
20¢m) (exponential) space??

Nondet = Deterministic TM: Space

AN
Let N be an NTM deciding language A in space f(n) ‘@' 4}1
* This means a single path could use f{n) space e X))
» That path could take 241 steps \N

» (That's the possible ways to fill the space)
« Each step could be a non-deterministic branch that must be saved

« So nalvely tracking these branches requires 291 space!
T
| 0|0|1|0|u| ... inputtape
D —— Tracks node
x|x|#|0|1|x|u|... simulaton tape branching e.g.,
— 1-1-2, etc.
112(3[3(2(3|1|2]1|1|3|u]|... addresstape

* Instead, let's “divide and conquer” to reduce space!

“Divide and Conquer” TM Config Sequences

 Want to chec

K whether:

TM configs

Cstart

200tm)(possibly branching) steps

* Instead, we ¢

Remembering the branch at every
step costs exponential space

Cstart

200) /2 steps

neck whether:

>

Remembering these steps

* Keep

dividing ...

costs half the space ...

C

Number of splits:
log(2°Ut)) = O(f(n))

... and we can reuse that space
to check the second half

start

>

> >

g Caccept
Each split must
remember a “c,.” config
So long as we save the = 0(f(n)) space
ntermediate config
200m) /2 st Total:
= steps
L = Caccept | | OULM) ™ OU(n))
= 0(f*(n)) space

(Savitch's Thm)

accept

Formally: A “Yielding” Algorithm

Start config | End config | # steps
Z

CANYIELD = “On inputcy, 2, and t:

Base case

—>1.

R

[f t = 1, then test directly whether ¢; = ¢5 or whether ¢; yields
co in one step according to the rules of N. Accept if either test

succeeds; reject if both fail. / I

Ift > 1, then for each configuration ¢,, of N using space f(n):
Run CANYIELD (1, ¢, 5).
Run CANYIELD (¢, €2, %).
If steps 3 and 4 both accept, then accept.

< “divide and conquer”

What's the middle

config? Try them all
(it doesn’t use any
more space, per loop)

If haven’t yet accepted, reject.”

323

Savitch’'s Theorem: Proof

« Let N be an NTM deciding language A in space f(n)

 Construct equivalent deterministic TM M using O(f*(n)) space:

M = “On input w:
1. Output the result of CANYIELD (Cstare, Caceepts 2% ™).

°C
°C

= start configuration of N

start

accept

Extra d constant
depends on size
of tape alphabet

= new accepting config where all N's accepting configs go

PSPACE

DEFINITION

PSPACE is the class of languages that are decidable in polynomial
space on a deterministic Turing machine. In other words,

PSPACE = | | SPACE(n").
k

NPSPACE

Analogous to P and NP for time complexity

DEFINITION

NPSPACE i is the class of languages that are decidable in polynomial
space on R Ueterministic ‘Turing machine. In other words,

NPSPACE = | N[SPACE(n").

But P € PSPACE and NP € NPSPACE
- Because each step can use at most one extra tape cell
- But space can be re-used

Flaskback: DOES P = NP?

Proving P # NP is hard because how do you prove an
algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)

327

PSPACE = NPSPACE ?

« PSPACE: langs decidable in poly space on deterministic TM

« NPSPACE: langs decidable in poly space on nondeterministic TM

Theorem: PSPACE = NPSPACE

Proof: By Savitch’s Theorem!

THEOREM --

Savitch’s theorem Forany function f: N— R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f?(n)).

Space vs Time

« P € PSPACE and NP € NPSPACE

» Because each step can use at most one extra tape cell
* And space can be re-used

* PSPACE € EXPTIME
« Because an f{(n) space TM has 2901 possible configurations
« And a halting TM cannot repeat a configuration

* We already know P € NP and PSPACE = NPSPACE ... so:
P € NP € PSPACE = NPSPACE € EXPTIME

Space vs Time: Conjecture

Researchers believe
these are all
completely contained
within each other

EXPTIME

PSPACE But this is an

open conjecture!

Only known result so far is:
P c EXPTIME
(this means some problems provably
have no poly time algorithm!)

P c NP c PSPACE = NPSPACE c EXPTIME

Last Quiz 5/11

In gradescope

