Welcome to CS420!
Intro to Theory of Computation

UMass Boston Computer Science
Instructor: Stephen Chang

Today's Theme: Spring 2024
What's CS 420 about?

Welcome to CS420!
intro to Theory of Computation

UMass Boston Computer Science '\

Instructor: Stephen Chang What's this?

Spring 2024

meertude: CS 420 Lecture Logistics

* | expect: lecture to be Interactive

« Participation is a part of your grade
 Also, it’'s the best way to learn!

| may: call on students randomly

* It's ok to be wrong in class! — will not affect your grade
 Also, it’'s the best way to learn!

* Please: tell me your name before speaking
 Sorry in advance if | get it wrong
« Also, it's the best way for me to learn!

Welcome to CS420!

intro to Theory of Computation
\

UMass Boston Computer Science | How would you
Instructor: Stephen Chang define this?

Spring 2024

Computation Is ... (via examples)

c1+1=7? ... Some basic definitions and assumptions (“axioms”),

e =2 e.g, define “Numbers” (in order) to be: 0,1, 2, 3, ...

e 11+11=7? ... and rules that use the definitions and axioms (“algorithm”),
e =27 e.g., grade school arithmetic

9999999999 + 9999999999 =7?? Computation rules can be executed by
= 19999999998 hand, or by machine / automaton

1+1=77
=10
(binary)

There are many possible definitions
(models) of computation

Computation Is ... Programs!

Every programming language

def f(x): Is acr'podel of computation
if x > 0: 'fferent???
return x + 1

else:
return x — 1

If they are different:
how can we know?

Or same>5,
) 11 If they are the same:
what is a (simple)
You already use model for all of them

models of
computation!

In CS 420 this semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

Models of Computation

[Ffirite Tape

1|o|n|o

[]

0| ERE

Control Unit

| State:
. r

Input
Do

Read Fite Head

' simplify

Contral Processing Unit

ArithmeticiLagle Unit

Cuitput
Device

(=

simplify

16

In CS 420 this semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

2. Compare & contrast models of computation
« which “programs” are included by a model
« which “programs” are excluded by a model
« overlap between models?

Models of Computation

Q: Are there
computational
models ...

“more powerful”
than Turing
Machines?

Turing Machines

Q: Are there computational models ...
other than Turing Machines?

Q: Are there computational models ...
“weakRer” than Turing Machines?

Q: What does “weaker” or
“more powerful” even mean?!

A: Yes!

18

Models of Computation Hierarchy [.andgettonere..

Turing Machines

... and also look at
what's out here???

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

We’'ll start here ...

19

But remenber ... COMpuUtation = Programs!

A Programming language _ Turing Machines

A Programming language _ Linear bounded Automata

More powerful
More complex
Less restricted

A Programming language _ Push-down Automata

A Programming language M -
|

z%{@fa/ a/m/a/% 0[0/‘ this course,

- a class of machines (each rectangle above) ~ a Programming Language!
- a single machine (one thing in a rectangle) ~ @ Program! 20

Welcome to CS420!

intro to Theory of Computation

UMass Boston Computer Science
Instructor: Stephen Chang

Spring 2024

N\

What's this?

25

Welcome to CS420!
Intro to Theory of Computation

UMass Boston C'Qmputer Science
U What's this? |18

utll Lllb ol \J ud |

“Theory” = math
(This is a math course!)

(But programming is math too!)

26

Programming Is (What) Math?

Math(ematical) logic!

def f(x):
if x > 0:
return x + 1
else:

return x — 1

print(f(10)) 7?77

= 11

How did you figure out the answer?

(But programming is math too!)

27

Programming = Mathematical logic!

* “logic is the foundation of all computer programming”

 https://www.technokids.com/blog/programming/its-easy-to-improve-logical-thinking-with-programming/

* “logic is the fundamental key to becoming a good developer”

 https://www.geeksforgeeks.org/i-cant-use-logic-in-programming-what-should-i-do/

* “Analytical skill and logical reasoning are prerequisites of programming
because coding is effectively logical problem solving at its core”

 https://levelup.gitconnected.com/the-secret-weapon-of-great-software-engineers-22d57f427937

Programming = Mathematical logic!

Programming Concepts Math(ematical Logic) Concepts
* Functions * Functions

 Variables Variables

e If-then e If-then (implication)

e Recursion e Recursion

* Strings * Strings

* Sets (and other * Sets (and other

data structures) groupings of data)

In CS 420 this semester, we will ...

1. Define and study models of computation
- models will be as simple as possible (to make them easier to study)

2. Compare & contrast models of computation
« which “programs” are included by a model
« which “programs” are excluded by a model
« overlap between models?

3. Prove things about the models

35

You already do “Proof” when Programming

def f(x):
if (x >0) | (x <0) | (x ==0):
return x + 1 P
else:

return 1 / 0O

print(f(10)) 7?77

= 11

Can this function ever throw ZeroDivisionError?

How did you figure out the answer? You did a proof!

(Let's write it out formally)

A (Mathematical) Theory Is ...

Mathematical theory

From Wikipedia, the free encyclopedia

A mathematical theory is ¢ mathematical model >f a branch of mathematics that is
based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based
on known axioms and definitions |, and so in this sense can refer to an area of
mathematical research within the established framework.[1[2]

Explanatory depth is one of the most significant theoretical virtues in mathematics. For

example, set theory has the ability tolsystematize and explainlnumber theory and

geometry/analysis. Despite the widely logical necessity (and self-evidence) of arithmetic
truths such as 1<3, 2+2=4, 6-1=5, and so on, a theory that just postulates an infinite
blizzard of such truths would be inadequate. Rather an adequate theory is one in which
such truths are derived from explanatorily prior axioms, such as the Peano Axioms or set
theoretic axioms, which lie at the foundation of ZFC axiomatic set theory.

The singular accomplishment of axiomatic set theory is its ability to give a foundation for
the derivation of the entirety of classical mathematics from a handful of axioms. The
reason set theory is so prized is because of its explanatory depth. So a mathematical
theory which just postulates an infinity of arithmetic truths without explanatory depth would
not be a serious competitor to Peano arithmetic or Zermelo-Fraenkel set theory.[3][4]

... a mathematical model,
l.e., axioms and definitions, of
some domain, e.g. computers ...

... that explains (predicts)
some real-world phenomena ...

... and can derive (prove)
additional results (theorems) ...

38

How Mathematics Works

More Theorems

More Axioms

Mathematician

(or student)

More Definitions

Theorem

N

Actually, it's not always so
easy to create the next level ... : Theorem
Preciseness is important 5
(just like in programming)

Axioms

Proofs = Figuring out how to
(precisely) stack the pieces together

Definitions

The “Modus Ponens” Inference Rule

(Precisely Fitting Blocks Together)

Premises (if we can show these statements are true)

 [f Pthen Q
* P IS TRUE
I DON'T KNOW WHAT MODUS
. . ww= PONENS IS
Conclusion (then we can say that this is also true) ¥

* Q) must also be TRUE

Kinds of Mathematical Proof

Deductive Proof
e Start with: known facts and statements

e Use: logical inference rules (like modus ponens)
to prove new facts and statements

def f(x): “test expr”

Deductive Proof Example = oo ieeo =0

return x + 1%“first branch”

. . . else:
Prove: fn f never throws ZeroDivisionError return 1 / ©“second branch”
Proof: Prior steps are already-proved, can be used to prove later steps! Statements / Justifications Table
Statements Justifications
. . Modus P
1. | If running “test expr” is True, 1. Rules of Python fo T -
then “first branch” runs If we can prove these:
. . - If P then Q
2. Ifrunning “test expr’1s False, 2. Rules of Python Ir
then “second branch” runs
:] o Then we've proved:
3. running “test expr’ IS (always) True 3. Definition of “numbers” 0| ¢
m) 4. | “first branch” (always) runs 4, By steps 1, 3, and modus ponens

/. fn f never throws zerobdivisionError

def f(x):

Deductive Proof Example = oo ieeo i x=o.

Prove: fn f never throws ZeroDivisionError

Proof:
Statements
1. If running “test expr” is True,
then “first branch” runs
2. If running “test expr”’ Is False,
then “second branch” runs
3. running “test expr” is (always) True
4. “first branch” (always) runs
5. “second branch” never runs
6. fnfneverrunsl / 0
m) 7. fn f never throws zerobivisionError

N o v rw

return x + 1“first branch”
else:
return 1 / 0 “second branch”

Statements / Justifications Table

Justifications
1.

Rules of Python
Rules of Python

Definition of “numbers”

By steps 1, 3, and modus ponens
By steps 1, 2, and ??7?

By step 5

By step 6 and ???

