Welcome to CS420!
Intro to Theory of Computation

UMass Boston Computer Science Lot
Instructor: Stephen Chang

Wednesday, January 24, 2024

48

Last [rne

Welcome to CS420!
intro to Theory of Computation

UMass Boston Computer Science
Instructor: Stephen Chang

Wednesday, January 24, 2024
Aralagy:

Computation Model
(system of definitions and rules)
&

Programming Language

Last [rne

Welcome to CS420!

Intro to Theory of Computation

UMass Boston Computer Science
Instructor: Stephen Chang

Wednesday, January 24, 20

“Theory” = math —
(This is a math course!)

N

(But programming is math too!)

24

Are ge '\(\ed

W Ccomputation Model

(system of definitions and rules)
&

Programming Language

Last [rine

Programming = Mathematical logic!

* “logic is the foundation of all computer programming”

 https://www.technokids.com/blog/programming/its-easy-to-improve-logical-thinking-with-programming/

* “logic is the fundamental key to becoming a good developer”

 https://www.geeksforgeeks.org/i-cant-use-logic-in-programming-what-should-i-do/

* “Analytical skill and logical reasoning are prerequisites of programming
because coding is effectively logical problem solving at its core”

 https://levelup.gitconnected.com/the-secret-weapon-of-great-software-engineers-22d57f427937

In CS 420 this semester, we will ...

1. Formally define and study models of computation
- models will be as simple as possible (to make them easier to study)

2. Compare & contrast models of computation
« which “programs” are included [excluded by a model
« Equality or overlap between models?

3. Prove things about the models

You already do “Proof” when Programming

def f(x):
if (x >0) | (x <0) | (x ==0):
return x + 1 P
else:

return 1 / 0O

Can this function ever throw ZeroDivisionError?

How did you figure out the answer? You did a proof!

(Let's write it out formally)

How Mathematics (Proofs) Work

Mathematician
(or student)

Preciseness is important
(just like in programming)

Proofs = Figuring out how to

More Theorems

More Axioms

More Definitions

Adding next level is har\

(precisely) stack the pieces together

N

Theorem

Theorem

Axioms

Definitions

55

The “Modus Ponens” Inference Rule

(Precisely Fitting Blocks Together)

Premises (if we can show these statements are true)

 [f Pthen Q
* P IS TRUE
I DON'T KNOW WHAT MODUS
. . ww= PONENS IS
Conclusion (then we can say that this is also true) ¥

* Q) must also be TRUE

def f(x): “test expr”

Deductive Proof Example = oo ieeo =0

return x + 1%“first branch”

. . . else:
Prove: fn f never throws ZeroDivisionError return 1 / ©“second branch”
Proof: Prior steps are already-proved, can be used to prove later steps! Statements / Justifications Table
Statements Justifications
. . Modus P
1. | If running “test expr” is True, 1. Rules of Python fo T -
then “first branch” runs If we can prove these:
. . - If P then Q
2. Ifrunning “test expr’1s False, 2. Rules of Python Ir
then “second branch” runs
:] o Then we've proved:
3. running “test expr’ IS (always) True 3. Definition of “numbers” 0| ¢
m) 4. | “first branch” (always) runs 4, By steps 1, 3, and modus ponens

/. fn f never throws zerobdivisionError

def f(x):

Deductive Proof Example = oo ieeo i x=o.

Prove: fn f never throws ZeroDivisionError

Proof:
Statements
1. If running “test expr” is True,
then “first branch” runs
2. If running “test expr”’ Is False,
then “second branch” runs
3. running “test expr” is (always) True
4. “first branch” (always) runs
5. “second branch” never runs
6. fnfneverrunsl / 0
m) 7. fn f never throws zerobivisionError

N o v rw

return x + 1“first branch”
else:
return 1 / 0 “second branch”

Statements / Justifications Table

Justifications
1.

Rules of Python
Rules of Python

Definition of “numbers”

By steps 1, 3, and modus ponens
By steps 1, 2, and ??7?

By step 5

By step 6 and ???

What else can we prove about programs?

ANSOMWARE ATTACK /\

1f the number n 1s a prime
/! 1f the 3

YOUR FILES HAVE BEEN ENCRYPTED

| number
ek i

& prime

not a pri.

Predict result without running a program?

Can we make predictions about computation?

It's tricky: Trying to predict
computation requires computation!

60

Can we make predictions about computation?

 The Halting Lemma says:

» And Rice’s Theorem says:

* “all non-trivial, semantic properties of programs are undecidable”

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Decision_problem

Knowing What Computers Can't Do 1s Still Useful!

In Cryptography:
 Perfect secrecy Is impossible in practice

« But with slightly imperfect secrecy (e, a computationally bounded adversary)
we get:

Can we make predictions about computation?

Actually:
* it depends on the computation model!

64

https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Decision_problem

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability. Bill Gates, April 18, 2002. Keynote address at WinHec
b, -

2002

z, Or

end() houe){

LI i vy

ur computer. If you do
itiom in all open applice

ocs

Predicting things about programs ... is the Holy grail of CS!

Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification tool, included in the Windows Driver Kit (WDK). The SDV
Research Platform (SDVRP) is an extension to SDV that allows you to adapt SDV to:

e Support additional frameworks (or APIs) and write custom SLIC rules for this framework.

e Experiment with the model checking step.

65

CS 420 Proofs About Computational Models

Turing Machines

More powerful

Linear bounded Automata More complex
Less restricted

Push-down Automata

In this class, we will prove things about
our simple computational models 67

How CS 420 Works

4
Semester End / More CS420 Definitions,
Axioms, & Theorems

' Thm '. CS420 Theorems

Semester Start — CS 420,) CS420 Definitions & Axioms

. Graph‘_‘ (What you will learn

Theory this semester)
Set Theory
Prerequisite [
(CS 220) S Boolean
(see hwO) Logic

A m >]
{ Mathematical
Logic

A Word of Advice

Important:
Do not fall behind
In this course

77

To prove a (new) theorem ...

... need to know all axioms,
definitions, and (previous)
theorems below it

80

HW 1, Problem 1

Another Word of Advice

Prove that ABC = XY Z

©
T How can | help you today?
—‘Z\ m @ vessceomcer Prove that ABC
, i A Not-From-CS42
“Blocks” from outside the Spring2024 Theoré

Remember:
Preciseness in proofs (just like in
programming) is critical
(Proofs must connect facts from
this course exactly)

... can be used to prove (new)
theorems in this course

Only axioms, definitions, and
theorems from this course ...

HW problems are graded on precise steps
in the proof, not on the final theorem itself! .

Textbooks

« Sipser. Intro to Theory of Computation, 3" ed.

« Hopcroft, Motwani, Ullman. Intro to Automata Theory, Languages,
and Computation, 3™ ed.

Strongly Recommended (but not required)
- Slides (posted) and lecture should be self-contained,
- BUT, Students who do well read the book

All course info available on web site:
https://www.cs.umb.edu/~stchang/cs420/s24

How to Do Well in this Course

« Learn the “ building blocks”
* |.e., axioms, definitions, and theorems

» To solve a problem (prove a new theorem) ...
... think about how to (precisely) combine existing “blocks”

« HW problems graded on steps to the answer (not final theorem)

« Don't Fall Behind!
e Start HW Early (HW 0 due Monday 1/22 12pm EST noon)

« Participate and Engage
* Lecture
 Office Hours
» Message Boards (piazza)

Grading

« HW: 80% * A range: 90-100
« Weekly: In / Out Monday » B range: 80-90

« Approx. 12 assignments . .
e Lowest grade dropped C range: 70-80

» Participation: 20% * D range: 60-70
e Lecture participation, in-class *F: <60
work, office hours, piazza
* No exams

All course info available on web site:
https://www.cs.umb.edu/~stchang/cs420/s24

Late HW

* Is bad ... try not to do It please

« Grades get delayed
e Can't discuss solutions
* You fall behind!

« Late Policy: 3 late days to use during the semester

HW Collaboration Policy

Allowed Not Allowed
 Discussing HW with classmates « Submitting someone else’s answer
(but must cite) » Submitting someone else’s answer with:
 Using other resources to learn, « variables changed,
e.g., youtube, other textbooks, ... « thesaurus words,
° ertlng Up answers * Or sentences rearranged
on your own, from scratch, Using sites like Chegg, CourseHero,
In your own words Bartleby, Study, ChatGPT, etc.

« Using theorems or definitions not from
this course

90

Honesty Policy

* 15t offense: zero on problem
« 2nd offense: zero on hw, reported to school
« 3'd offense+: F for course

Regret policy

* If you self-report an honesty violation, you’ll only
recelve a zero on the problem and we move on.

All Up to Date Course Info

Survey, Schedule, Office Hours, HWs, ...

See course website:

https://www.cs.umb.edu/~stchang/cs420/s24/

95

https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html
https://www.cs.umb.edu/~stchang/cs420/f20/index.html

hwO (pre-req quiz)
(see gradescope)

